Применение алкоксоацетилацетонатов металлов для получения электрохромных пленок на основе V2O5, допированного никелем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

С применением алкоксоацетилацетонатов ванадила и никеля получены пленки пентаоксида ванадия, допированного 1, 3 и 10 мол. % оксида никеля. Все пленки кристаллизуются в тетрагональной модификации β-V2O5. Материалы сильно текстурированы вдоль оси (200) и образованы из одномерных структур, однако при содержании 3 и 10 мол. % NiO помимо них наблюдаются и наночастицы размером 30–50 нм. По данным КР-спектроскопии, материалы содержат заметное количество ионов V4+, однако следы фаз NiO не обнаружены. Все полученные материалы с точки зрения электрохромных свойств являются катодными, изменяя цвет при восстановлении на темно-синий, а при окислении — на более прозрачный желтый. При этом увеличение содержания никеля приводит к снижению эффективности окрашивания и замедлению электрохромных процессов. Результаты исследования позволяют сделать вывод о перспективности использования материалов на основе V2O5, допированного никелем, полученных с применением алкоксоацетилацетонатов металлов как предшественников, в качестве компонентов электрохромных устройств.

Полный текст

Доступ закрыт

Об авторах

Ф. Ю. Горобцов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: phigoros@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991

Н. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: phigoros@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991

Т. Л. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: phigoros@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991

Е. П. Симоненко

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: phigoros@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991

Список литературы

  1. Mortimer R.J. // Annu Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
  2. Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
  3. Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
  4. Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
  5. Gillaspie D.T., Tenent R.C., Dillon A.C. // J. Mater. Chem. 2010. V. 20. № 43. P. 9585. https://doi.org/10.1039/c0jm00604a
  6. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
  7. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
  8. Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim Acta. 2018. V. 259. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
  9. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C. Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
  10. Cheng K.C., Chen F.R., Kai J.J. // Solar Energy Materials Solar Cells. 2006. V. 90. № 7–8. P. 1156. https://doi.org/10.1016/j.solmat.2005.07.006
  11. Scherer M.R.J., Li L., Cunha P.M.S. et al. // Adv. Mat. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
  12. Jin A., Chen W., Zhu Q. et al. // Electr. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
  13. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
  14. Sonavane A.C., Inamdar A.I., Shinde P.S. et al. // J. Alloys. Compd. 2010. V. 489. № 2. P. 667. https://doi.org/10.1016/j.jallcom.2009.09.146
  15. Yoshino T., Kobayashi K., Araki S. et al. // Sol. Energy. Mater. Sol. Cells. 2012. V. 99. P. 43. https://doi.org/10.1016/j.solmat.2011.08.024
  16. Wen R.T., Niklasson G.A., Granqvist C.G. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9319. https://doi.org/10.1021/acsami.5b01715
  17. Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C Mater. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
  18. Chen Y., Wang Y., Sun P. et al. // J. Mate.r Chem. A Mater. 2015. V. 3. № 41. P. 20614. https://doi.org/10.1039/c5ta04011f
  19. Simonenko E.P., Simonenko N.P., Kopitsa G.P. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 691. https://doi.org/10.1134/S0036023618060232
  20. Gorobtsov P.Y., Simonenko N.P., Simonenko T.L. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1580. https://doi.org/10.1134/S0036023624602277
  21. Горобцов Ф.Ю., Симоненко Н.П., Мокрушин А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 624. https://doi.org/DOI: 10.31857/S0044457X24040177
  22. Filonenko V.P., Sundberg M., Werner P.E. et al. // Acta Crystallogr. B. 2004. V. 60. № 4. P. 375. https://doi.org/10.1107/S0108768104012881
  23. Talledo A., Valdivia H., Benndorf C. // J. Vac. Sci. Tech. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
  24. Zou C., Fan L., Chen R. et al. // Cryst. Eng. Comm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
  25. Khlayboonme S.T. // Results Phys. 2022. V. 42. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
  26. Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. P. 076401. https://doi.org/10.1088/2053-1591/ac827a
  27. Asadov A., Mukhtar S., Gao W. // J. Vac. Sci. Tech. 2015. V. 33. P. 041802. https://doi.org/10.1116/1.4922628
  28. Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
  29. Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectr. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
  30. Clauws P., Broeckx J., Vennik J. // Physica Status Solidi (B) 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
  31. Abello L., Husson E., Repelin Y. et al. // Spectrochim. Acta A. 1983. V. 39. P. 641.
  32. Zhou B., He D. // J. Raman Spectr. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
  33. Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectr. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
  34. Schilbe P. // Physica. 2002. V. 316–317. P. 600.
  35. Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. P. 4854. https://doi.org/10.1038/srep04854
  36. Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. P. 033710. https://doi.org/10.1063/1.3611392
  37. Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C Mater. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
  38. Peng H., Sun W., Li Y. et al. // Nano. Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
  39. Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // Appl. Surf. Sci. 2022. V. 578. P. 151984. https://doi.org/10.1016/j.apsusc.2021.151984
  40. Greiner M.T., Helander M.G., Wang Z.-B. et al. // J. Phys. Chem. C. 2010. V. 114. № 46. P. 19777. https://doi.org/10.1021/jp108281m

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Дифрактограммы (а) и КР-спектры (б) пленок оксида ванадия, допированного разным количеством никеля, на стеклянных подложках после термообработки при 400°С (2 ч). Маркером “*” отмечены рефлексы тетрагональной модификации β-V2O5.

Скачать (45KB)
3. Рис. 2. Результаты растровой электронной микроскопии полученных пленок оксида ванадия с различным содержанием никеля.

Скачать (68KB)
4. Рис. 3. Результаты АСМ пленок оксида ванадия с различным содержанием никеля.

Скачать (32KB)
5. Рис. 4. Результаты измерения электрохромных свойств пленок V2O5 с различным содержанием никеля: а — спектры пропускания ячейки с образцом V2O5–3% Ni в видимом и ближнем ИК-диапазонах после выдержки в течение 60 с при разных значениях потенциала; б — изменение коэффициента пропускания ячеек при длине волны 700 нм и выдержке в течение 15 с при 2 и –2 В (V2O5–1% Ni), –2.5 В (V2O5–3% Ni, V2O5–10% Ni); в — ЦВА пленок, записанные со скоростью изменения потенциала 50 мВ/с.

Скачать (31KB)

© Российская академия наук, 2025