Application of metal alkoxoacetylacetonates in preparation of electrochromic films based on nickel-doped V2O5
- Authors: Gorobtsov P.Y.1, Simonenko N.P.1, Simonenko T.L.1, Simonenko E.P.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 70, No 7 (2025)
- Pages: 979-986
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://jdigitaldiagnostics.com/0044-457X/article/view/689618
- DOI: https://doi.org/10.31857/S0044457X25070148
- EDN: https://elibrary.ru/JOQWWJ
- ID: 689618
Cite item
Abstract
Vanadyl and nickel alkoxoacetylacetonates were used to prepare vanadium pentaoxide films doped with 1, 3, and 10 mol % nickel oxide. All films crystallized in tetragonal β-V2O5 modification. The materials are strongly textured along the (200) axis and formed from one-dimensional structures, however, at 3 and 10 mol % NiO content, nanoparticles of 30–50 nm size are also observed in addition to them. According to the results of Raman spectroscopy, the materials contain a noticeable amount of V4+ ions, but no traces of NiO phases were found. All obtained materials, in terms of electrochromic properties are cathodic, changing color during reduction to dark blue, and during oxidation — to more transparent yellow. At the same time, an increase in nickel content leads to a decrease in coloring efficiency and slowing down of electrochromic processes. The results of the study allow us to conclude that it is promising to use materials based on V2O5 doped with nickel, obtained with the use of metal alkoxoacetylacetonates as precursors, as components of electrochromic devices.
Full Text

About the authors
Ph. Yu. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
N. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
T. L. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
E. P. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: phigoros@gmail.com
Russian Federation, Moscow, 119991
References
- Mortimer R.J. // Annu Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
- Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
- Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
- Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
- Gillaspie D.T., Tenent R.C., Dillon A.C. // J. Mater. Chem. 2010. V. 20. № 43. P. 9585. https://doi.org/10.1039/c0jm00604a
- Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
- Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
- Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim Acta. 2018. V. 259. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
- Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C. Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
- Cheng K.C., Chen F.R., Kai J.J. // Solar Energy Materials Solar Cells. 2006. V. 90. № 7–8. P. 1156. https://doi.org/10.1016/j.solmat.2005.07.006
- Scherer M.R.J., Li L., Cunha P.M.S. et al. // Adv. Mat. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
- Jin A., Chen W., Zhu Q. et al. // Electr. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
- Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
- Sonavane A.C., Inamdar A.I., Shinde P.S. et al. // J. Alloys. Compd. 2010. V. 489. № 2. P. 667. https://doi.org/10.1016/j.jallcom.2009.09.146
- Yoshino T., Kobayashi K., Araki S. et al. // Sol. Energy. Mater. Sol. Cells. 2012. V. 99. P. 43. https://doi.org/10.1016/j.solmat.2011.08.024
- Wen R.T., Niklasson G.A., Granqvist C.G. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9319. https://doi.org/10.1021/acsami.5b01715
- Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C Mater. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
- Chen Y., Wang Y., Sun P. et al. // J. Mate.r Chem. A Mater. 2015. V. 3. № 41. P. 20614. https://doi.org/10.1039/c5ta04011f
- Simonenko E.P., Simonenko N.P., Kopitsa G.P. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 691. https://doi.org/10.1134/S0036023618060232
- Gorobtsov P.Y., Simonenko N.P., Simonenko T.L. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1580. https://doi.org/10.1134/S0036023624602277
- Горобцов Ф.Ю., Симоненко Н.П., Мокрушин А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 624. https://doi.org/DOI: 10.31857/S0044457X24040177
- Filonenko V.P., Sundberg M., Werner P.E. et al. // Acta Crystallogr. B. 2004. V. 60. № 4. P. 375. https://doi.org/10.1107/S0108768104012881
- Talledo A., Valdivia H., Benndorf C. // J. Vac. Sci. Tech. 2003. V. 21. № 4. P. 1494. https://doi.org/10.1116/1.1586282
- Zou C., Fan L., Chen R. et al. // Cryst. Eng. Comm. 2012. V. 14. № 2. P. 626. https://doi.org/10.1039/c1ce06170d
- Khlayboonme S.T. // Results Phys. 2022. V. 42. P. 106000. https://doi.org/10.1016/j.rinp.2022.106000
- Khlayboonme S.T., Thedsakhulwong A. // Mater. Res. Express. 2022. V. 9. P. 076401. https://doi.org/10.1088/2053-1591/ac827a
- Asadov A., Mukhtar S., Gao W. // J. Vac. Sci. Tech. 2015. V. 33. P. 041802. https://doi.org/10.1116/1.4922628
- Ureña-Begara F., Crunteanu A., Raskin J.P. // Appl. Surf. Sci. 2017. V. 403. P. 717. https://doi.org/10.1016/j.apsusc.2017.01.160
- Shvets P., Dikaya O., Maksimova K. et al. // J. Raman Spectr. 2019. V. 50. № 8. P. 1226. https://doi.org/10.1002/jrs.5616
- Clauws P., Broeckx J., Vennik J. // Physica Status Solidi (B) 1985. V. 131. № 2. P. 459. https://doi.org/10.1002/pssb.2221310207
- Abello L., Husson E., Repelin Y. et al. // Spectrochim. Acta A. 1983. V. 39. P. 641.
- Zhou B., He D. // J. Raman Spectr. 2008. V. 39. № 10. P. 1475. https://doi.org/10.1002/jrs.2025
- Baddour-Hadjean R., Marzouk A., Pereira-Ramos J.P. // J. Raman Spectr. 2012. V. 43. № 1. P. 153. https://doi.org/10.1002/jrs.2984
- Schilbe P. // Physica. 2002. V. 316–317. P. 600.
- Ji Y., Zhang Y., Gao M. et al. // Sci. Rep. 2014. V. 4. P. 4854. https://doi.org/10.1038/srep04854
- Meyer J., Zilberberg K., Riedl T. et al. // J. Appl. Phys. 2011. V. 110. P. 033710. https://doi.org/10.1063/1.3611392
- Zhang H., Wang S., Sun X. et al. // J. Mater. Chem. C Mater. 2017. V. 5. № 4. P. 817. https://doi.org/10.1039/c6tc04050k
- Peng H., Sun W., Li Y. et al. // Nano. Res. 2016. V. 9. № 10. P. 2960. https://doi.org/10.1007/s12274-016-1181-z
- Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // Appl. Surf. Sci. 2022. V. 578. P. 151984. https://doi.org/10.1016/j.apsusc.2021.151984
- Greiner M.T., Helander M.G., Wang Z.-B. et al. // J. Phys. Chem. C. 2010. V. 114. № 46. P. 19777. https://doi.org/10.1021/jp108281m
Supplementary files
