Длина алкильных заместителей как фактор управления свойствами аэрогелей на основе SiO2

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Модифицированные аэрогели диоксида кремния получены методом совместного гелирования тетраметоксисилана и ацилированного 3-аминопропилтриметоксисилана с общей формулой (MeO)3–Si–(CH2)3–NHC(O)–R с последующей сверхкритической сушкой в CO2. Показано, что увеличение длины алкильного заместителя приводит к увеличению гидрофобности аэрогеля вплоть до образования супергидрофобных материалов (краевой угол смачивания 163.7°). Удельная поверхность получаемых аэрогелей может изменяться от 40 до 1375 м2/г.

Полный текст

Доступ закрыт

Об авторах

И. О. Гожикова

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН

Email: lenochka.chg@gmail.com

Институт физиологически активных веществ

Россия, Северный пр-д, 1, Черноголовка, 142432

Е. А. Страумал

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН

Автор, ответственный за переписку.
Email: lenochka.chg@gmail.com

Институт физиологически активных веществ

Россия, Северный пр-д, 1, Черноголовка, 142432

С. Ю. Котцов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: lenochka.chg@gmail.com
Россия, Ленинский пр-т, 31, Москва, 119991

Е. Ю. Постнова

Институт физики твердого тела РАН

Email: lenochka.chg@gmail.com
Россия, ул. Академика Осипьяна, 2, Черноголовка, 142432

С. А. Лермонтов

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН

Email: lenochka.chg@gmail.com

Институт физиологически активных веществ

Россия, Северный пр-д, 1, Черноголовка, 142432

Список литературы

  1. Евстропьев С.К., Солдярова В.Л., Сатаровский А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 3. С. 394. https://doi.org/10.1134/S0036023623603446
  2. Бегимкулова С.В., Насимов А.М., Рузимударов А.М. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 537. https://doi.org/10.1134/S0036023624600485
  3. Wagh P.B., Begag R., Pajonk G.M. et al. // Mater. Chem. Phys. 1999. V. 57. № 3. P. 214. https://doi.org/10.1016/S0254-0584(98)00217-X
  4. Durães L., Maia A., Portugal A. // J. Supercrit. Fluids. 2015. V. 106. P. 85. https://doi.org/10.1016/j.supflu.2015.06.020
  5. Ehgartner C.R., Grandl S., Feinle A. et al. // Dalton Trans. 2017. V. 46. P. 8809. https://doi.org/10.1039/C7DT00558J
  6. Zhang G., Li C., Wang Y. et al. // Gels. 2023. V. 9. № 9. P. 720. https://doi.org/10.3390/gels9090720
  7. Xie L., Wu X., Wang G. et al. // Gels. 2023. V. 9. № 4. P. 317. https://doi.org/10.3390/gels9040317
  8. Li L., Xu T., Zhang F. et al. // Gels. 2023. V. 9. № 9. P. 739. https://doi.org/10.3390/gels9090739
  9. Chen L., Li L., Zhang X. // Nat. Commun. 2025. V. 16. P. 2228. https://doi.org/10.1038/s41467-025-57246-2
  10. Lamy-Mendes A., Torres R.B., Vareda J.P. et al. // Molecules. 2019. V. 24. № 20. P. 3701. https://doi.org/10.3390/molecules24203701
  11. Sipyagina N.A., Malkova A.N., Straumal E.A. et al. // J. Porous Mater. 2023. V. 30. P. 449. https://doi.org/10.1007/s10934-022-01357-4
  12. Yorov K.E., Kottsov S.Y., Baranchikov А.Е. et al. // J. Sol-Gel Sci. Technol. 2019. V. 92. P. 304. https://doi.org/10.1007/s10971-019-04958-9
  13. Keshavarz L., Ghaani M.R., English N.J. // Molecules. 2021. V. 26. № 16. P. 5023. https://doi.org/10.3390/molecules26165023
  14. Lermontov S.A., Sipyagina N.A., Malkova A.N. et al. // RSC Adv. 2016. V. 6. P. 80766. https://doi.org/10.1039/c6ra15444a
  15. Meti P., Wang Q., Mahadik D.B. et al. // Nanomaterials (Basel). 2023. V. 13. № 9. P. 1498. https://doi.org/10.3390/nano13091498
  16. Zhao Z., Pan Y., Yan M. et al. // J. Sol-Gel Sci. Technol. 2024. V. 112. P. 127. https://doi.org/10.1007/s10971-024-06518-2
  17. Yan Q., Feng Z., Luo J. et al. // Energу Buildings. 2022. V. 255. P. 111661. https://doi.org/10.1016/j.enbuild.2021.111661
  18. Yu Y., Guo D., Fang J. // J. Porous. Mat. 2015. V. 22. P. 621. https://doi.org/10.1007/s10934-015-9934-8
  19. Sipyagina N.A., Vlasenko N.E., Malkova A.N. et al. // Molecules. 2024. V. 29. № 8. P. 1868. https://doi.org/10.3390/molecules29081868
  20. Hüsing N., Schubert U., Mezei R. et al. // Chem. Mater. 1999. V. 11. № 2. P. 451. https://doi.org/10.1021/cm980756l
  21. Pierre A.C., Pajonk G.M. // Chem. Rev. 2002. V. 102. № 11. P. 4243. https://doi.org/10.1021/cr0101306
  22. Dong H., Brook M.A., Brennan J.D. // J. Mater. Chem. 2005. V. 17. № 11. P. 2807. https://doi.org/10.1021/cm050271e
  23. Borba A., Vareda J.P., Durães L. et al. // New. J. Chem. 2017. V. 41. № 14. P. 6742. https://doi.org/10.1039/c7nj01082f
  24. Baumann T.F., Gash A.E., Chinn S.C. et al. // Chem. Mater. 2005. V. 17. № 2. P. 395. https://doi.org/10.1021/cm048800m
  25. Nadargi D.Y., Rao A.V. // J. Alloys Compd. 2009. V. 467. № 1–2. P. 397. https://doi.org/10.1016/j.jallcom.2007.12.019
  26. Rao A.V. // J. Sol-Gel Sci. Technol. 2019. V. 90. P. 28. https://doi.org/10.1007/s10971-018-4825-5
  27. Rao A.V., Kalesh R.R. // Sci. Technol. Adv. Mater. 2003. V. 4. P. 509. https://doi.org/10.1016/j.stam.2003.12.010
  28. Yamauchi Y., Tenjimbayashi M., Samitsu S. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 35. P. 32381. https://doi.org/10.1021/acsami.9b09524
  29. Wang S., Jiang L. // J. Adv. Mater. 2007. V. 19. № 21. P. 3423. https://doi.org/10.1002/adma.200700934
  30. Rao A.V., Hegde N.D., Hirashima H. // J. Colloid Interface Sci. 2007. V. 305. № 1. P. 124. https://doi.org/10.1016/j.jcis.2006.09.025
  31. Hrubesh L.W., Coronado P.R., Satcher J.H. Jr. // J. Non-Cryst. Solids. 2001. V. 285. № 1-3. P. 328. https://doi.org/10.1016/S0022-3093(01)00475-6
  32. Onda T., Shibuichi S., Satoh N. et al. // Langmuir. 1996. V. 12. № 9. P. 2125. https://doi.org/10.1021/la950418o
  33. Mozetič M. // Polymers. 2023. V. 15. № 24. P. 4668. https://doi.org/10.3390/polym15244668
  34. Сумм Б.Д. и Горюнов Ю.В. Физико-химические основы смачивания и растекания. М.: Химия, 1976.
  35. Rao A.V., Pajonk G.M., Bhagat S.D. et al. // J. Non-Cryst. Solids. 2004. V. 350. P. 216. https://doi.org/10.1016/j.jnoncrysol.2004.06.034
  36. Rao A.V., Pajonk GM. // J. Non-Cryst. Solids. 2001. V. 285. № 1–3. P. 202. https://doi.org/10.1016/S0022-3093(01)00454-9
  37. Thommes M., Kaneko K., Neimark A.V. et al. // Pure Appl. Chem. 2015. V. 87. № 9–10. P. 1051. https://doi.org/10.1515/pac-2014-1117
  38. Sai H.Z., Xing L., Xiang J.H. et al. // Key Eng. Mater. 2012. V. 512–515. P. 1625. https://doi.org/10.4028/www.scientific.net/KEM.512-515.1625
  39. Park K.W., Kim J.Y., Seo H.J. et al. // Sci. Rep. 2019. V. 9. P. 13360. https://doi.org/10.1038/s41598-019-50053-y
  40. Chen D., Wang X., Ding W. et al. // Molecules. 2018. V. 23. № 12. P. 3192. https://doi.org/10.3390/molecules23123192

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Приложение
Скачать (445KB)
3. Рис. 1. Схема синтеза модифицированных силанов.

Скачать (18KB)
4. Рис. 2. Схема процесса гелирования (гидролиз и конденсация) тетраалкоксисилана.

5. Рис. 3. ИК-спектры образцов, полученных с использованием модифицированных силанов в качестве сопрекурсоров.

Скачать (19KB)
6. Рис. 4. Микрофотографии образцов аэрогелей SiO2-acet (а), SiO2-val (б), SiO2-pelarg (в) и SiO2-stear (г).

Скачать (64KB)
7. Рис. 5. Капля воды (10 мкл) на поверхности образцов SiO2-pelarg (а) и SiO2-stear (б).

Скачать (18KB)
8. Рис. 6. Полные изотермы адсорбции/десорбции азота для модифицированных аэрогелей. Распределение пор по размерам (вставка).

Скачать (42KB)

© Российская академия наук, 2025