Mesenchymal stromal cells as components of the hematopoietic microenvironment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Mesenchymal stromal cells (MSCs) located in the organs of embryonic and definitive hematopoiesis play a key role in organizing the hematopoietic microenvironment. Their regulatory effect on hematopoietic cells is associated mainly with paracrine production of cytokines and chemoattractants and with direct cell-to-cell interactions. In addition, MSCs are precursors of other cellular components of the hematopoietic niche, which also contribute to the maintenance of hematopoiesis. Data from many studies indicate a correlation of the hematopoietic activity of an organ at a particular developmental stage with the content and properties of MSCs. In the organs of embryonic hematopoiesis (such as placenta, liver, spleen), MSCs have signs of functional immaturity, in particular, a high capacity for proliferation with weak differentiation potential. Perhaps, organ and age differences in the properties of MSCs reflect the process of maturation of the hematopoietic niche during ontogenesis. In the prenatal period, the role of MSCs in the organization of the microenvironment may consist mainly in the trophic effect on hematopoietic cells, and in the postnatal period – in differentiation into specialized components of the stroma. Diseases of the blood system, such as aplastic anemia, myelodysplastic syndrome, acute leukemia, in many cases are accompanied by a decrease in the proliferative and osteogenic potential of MSCs and impairment of their ability to produce regulatory molecules. These changes, which worsen the quality of the hematopoietic niche formed by MSCs, may cause hematopoiesis disorders or contribute to their progression. A promising approach to the therapy of these diseases is the restoration of the pathologically altered hematopoietic microenvironment by transplantation of donor MSCs or pharmacological impact on the patient’s own MSCs.

Texto integral

Acesso é fechado

Sobre autores

O. Payushina

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Autor responsável pela correspondência
Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 119991

Z. Mirzezade

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 119991

D. Tsomartova

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 119991

E. Chereshneva

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 11999

M. Ivanova

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 11999

E. Tsomartova

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 11999

T. Lomanovskaya

Sechenov First Moscow Medical University, Ministry of Health of the Russian Federation

Email: payushina@mail.ru
Rússia, Trubetskaya, 8, Bld. 2, Moscow, 11999

Bibliografia

  1. Вартанян Н.Л., Бессмельцев С.С., Семенова Н.Ю., Ругаль В.И., 2014. Мезенхимальные стромальные клетки при апластической анемии, гемобластозах и негематологических опухолях // Бюл. СО РАМН. Т. 34. № 6. С. 17–26.
  2. Домарацкая Е.И., Паюшина О.В., 2018. Происхождение стволовых кроветворных клеток в эмбриональном развитии // Журн. общ. биологии. Т. 79. № 5. С. 363–375. https://doi.org/10.1134/S0044459618050056
  3. Дорофеева А.И., Шипунова И.Н., Лучкин А.В., Фидарова З.Т., Михайлова Е.А., 2022. Характеристики мультипотентных мезенхимных стромальных клеток, полученных из костного мозга больных апластической анемией до начала лечения // Гематол. и трансфузиол. Т. 67. № S2. С. 193–194.
  4. Иванов П.А., Юрова К.А., Хазиахматова О.Г., Шуплецова В.В., Малащенко В.В. и др., 2021. Роль мезенхимных стромальных/стволовых клеток в регуляции кроветворения в 3D-культуре in vitro // Рос. иммунол. журн. Т. 44. № 2. С. 153–160. https://doi.org/10.46235/1028-7221-992-ROS
  5. Исайкина Я.И., Лях Е.Г., Емельянова И.В., Савич Ю.В., 2019. Исследование функциональных свойств мезенхимальных стволовых клеток костного мозга при апластической анемии у детей // Гематол. трансфузиол. Вост. Европа. Т. 5. № 2. С. 141–149.
  6. Исайкина Я., Лях Е., Новикова М., Савич Ю., Кеда Л., 2021. Пролиферативная активность мезенхимальных стволовых клеток из различных частей плаценты // Наука и инновации. № 7. С. 76–80. https://doi.org/10.29235/1818-9857-2021-7-76-80
  7. Кожевникова М.Н., Микаелян А.С., Старостин В.И., 2009. Молекулярно-генетический и иммунофенотипический анализ антигенного профиля, остеогенных и адипогенных потенций мезенхимных стромальных клеток из печени зародышей и костного мозга половозрелых крыс // Цитология. Т. 51. № 6. С. 526–538.
  8. Лебединская О.В., Горская Ю.Ф., Шуклина Е.Ю., Лациник Н.В., Нестеренко В.Г., 2005. Анализ изменений количества стромальных клеток-предшественников в тимусе и селезенке животных различных возрастных групп // Морфология. Т. 127. № 3. С. 41–44.
  9. Лубкова О.Н., Цветаева Н.В., Момотюк К.С., Белкин В.М., Манакова Т.Е., 2011. Экспрессия VCAM-1 на стромальных клетках из костного мозга больных миелодиспластическими синдромами // Бюл. эксперим. биол. и мед. Т. 151. № 1. С. 17–20.
  10. Марейко Ю.Е., Исайкина Я.И., Савва Н.Н., Алейникова О.В., 2013. Влияние котрансплантации мезенхимальных стволовых клеток на восстановление гемопоэза и частоту развития острой реакции “трансплантат против хозяина” после аллогенной трансплантации гемопоэтических стволовых клеток у детей // Вопр. гематол. онкол. и иммунопатол. в педиатрии. Т. 12. № 4. С. 13–18.
  11. Паюшина О.В., Буеверова Э.И., Сатдыкова Г.П., Старостин В.И., Домарацкая Е.И., Хрущов Н.Г., 2004. Сравнительное исследование мезенхимных стволовых клеток, выделенных из костного мозга и эмбриональной печени мыши и крысы // Изв. РАН. Сер. биол. № 6. С. 659–664.
  12. Паюшина О.В., Буторина H.Н., Никонова Т.М., Кожевникова M.Н., Шевелева О.Н., Старостин В.И., 2011. Сравнительное исследование клонального роста и дифференцировки мезенхимных стромальных клеток из печени зародышей крысы на разных сроках пренатального развития // Цитология. Т. 53. № 11. С. 859–867.
  13. Паюшина О.В., Буторина Н.Н., Шевелева О.Н., Бухинник С.С., Березина А.А. и др., 2017. Сравнительное исследование мезенхимных стромальных клеток костного мозга на разных стадиях индивидуального развития // Онтогенез. Т. 48. № 4. С. 315–324. https://doi.org/10.7868/S0475145017040085
  14. Паюшина О.В., Буторина Н.Н., Шевелева О.Н., Бухинник С.С., Старостин В.И., 2013. Мезенхимальные стромальные клетки селезенки крысы в пренатальном и постнатальном онтогенезе: сравнительный анализ клонального роста, фенотипа и потенций к дифференцировке // Клеточные технологии в биологии и медицине. № 4. С. 223–230.
  15. Петинати Н.А., Садовская А.В., Васильева А.Н., Алешина О.А., Арапиди Г.П. и др., 2024. Протеом мультипотентных мезенхимных стромальных клеток костного мозга у больных острым миелоидным лейкозом // Гематол. и трансфузиол. Т. 69. № 2. Прилож. С. 129.
  16. Ругаль В.И., Семенова Н.Ю., Бессмельцев С.С., 2019. Формирование стромального микроокружения и становление гемопоэза в фетальной губчатой кости // Вестн. гематол. Т. 15. № 4. С. 14–18.
  17. Сорокина Т.В., Шипунова И.Н., Бигильдеев А.Е., Дризе Н.И., Кузьмина Л.А. и др., 2016. Изменение уровней экспрессии генов в мультипотентных мезенхимных стромальных клетках, полученных из костного мозга больных острыми лейкозами в процессе терапии // Гематол. и трансфузиол. Т. 61. № 3. С. 126–133. https://doi.org/10.18821/0234-5730/2016-61-3-126-133
  18. Старостин В.И., Домарацкая Е.И., 2001. Хондро- и остеогенез в эктопических трансплантатах печени зародышей мышей // Онтогенез. Т. 32. № 2. С. 114–117.
  19. Шевела Е.Я., Кулагин А.Д., Тихонова М.А., Сахно Л.В., Крючкова И.В. и др., 2010. Апластическая анемия: фенотип и функции мезенхимальных стромальных клеток костного мозга // Гематол. и трансфузиол. Т. 55. № 6. С. 14–21.
  20. Andrzejewska A., Lukomska B., Janowski M., 2019. Concise review: Mesenchymal stem cells: From roots to boost // Stem Cells. V. 37. № 7. P. 855–864. https://doi.org/10.1002/stem.3016
  21. Anthony B.A., Link D.C., 2014. Regulation of hematopoietic stem cells by bone marrow stromal cells // Trends Immunol. V. 35. № 1. P. 32–37. https://doi.org/10.1016/j.it.2013.10.002
  22. Aoki K., Kurashige M., Ichii M., Higaki K., Sugiyama T., et al., 2021. Identification of CXCL12-abundant reticular cells in human adult bone marrow // Br. J. Haematol. V. 193. № 3. P. 659–668. https://doi.org/10.1111/bjh.17396
  23. Asada N., Kunisaki Y., Pierce H., Wang Z., Fernandez N.F., et al., 2017. Differential cytokine contributions of perivascular haematopoietic stem cell niches // Nat. Cell Biol. V. 19. № 3. P. 214–223. https://doi.org/10.1038/ncb3475
  24. Atmar K., Tulling A.J., Lankester A.C., Bartels M., Smiers F.J., et al., 2022. Functional and immune modulatory characteristics of bone marrow mesenchymal stromal cells in patients with aplastic anemia: A systematic review // Front. Immunol. V. 13. Art. 859668. https://doi.org/10.3389/fimmu.2022.859668
  25. Azadniv M., Myers J.R., McMurray H.R., Guo N., Rock P., et al., 2020. Bone marrow mesenchymal stromal cells from acute myelogenous leukemia patients demonstrate adipogenic differentiation propensity with implications for leukemia cell support // Leukemia. V. 34. № 2. P. 391–403. https://doi.org/10.1038/s41375-019-0568-8
  26. Babenko V.A., Silachev D.N., Danilina T.I., Goryunov K.V., Pevzner I.B., et al., 2021. Age-related changes in bone-marrow mesenchymal stem cells // Cells. V. 10. № 6. Art. 1273. https://doi.org/10.3390/cells10061273
  27. Baker N., Boyette L.B., Tuan R.S., 2015. Characterization of bone marrow-derived mesenchymal stem cells in aging // Bone. V. 70. P. 37–47. https://doi.org/10.1016/j.bone.2014.10.014
  28. Boada M., Echarte L., Guillermo C., Diaz L., Touriño C., Grille S., 2021. 5-Azacytidine restores interleukin 6-increased production in mesenchymal stromal cells from myelodysplastic patients // Hematol. Transfus. Cell Ther. V. 43. № 1. P. 35–42. https://doi.org/10.1016/j.htct.2019.12.002
  29. Campagnoli C., Roberts I.A., Kumar S., Bennett P.R., Bellantuono I., Fisk N.M., 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow // Blood. V. 98. № 8. P. 2396–2402. https://doi.org/10.1182/blood.v98.8.2396
  30. Castrechini N.M., Murthi P., Gude N.M., Erwich J.J., Gronthos S., et al., 2010. Mesenchymal stem cells in human placental chorionic villi reside in a vascular niche // Placenta. V. 31. № 3. P. 203–212. https://doi.org/10.1016/j.placenta.2009.12.006
  31. Chao Y.H., Lin C.W., Pan H.H., Yang S.F., Weng T.F., et al., 2018. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia // Pediatr. Blood Cancer. V. 65. № 9. Art. e27247. https://doi.org/10.1002/pbc.27247
  32. Corradi G., Baldazzi C., Očadlíková D., Marconi G., Parisi S., et al., 2018. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival // Stem Cell Res. Ther. V. 9. № 1. Art. 271. https://doi.org/10.1186/s13287-018-1013-z
  33. Corre J., Barreau C., Cousin B., Chavoin J.P., Caton D., et al., 2006. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors // J. Cell. Physiol. V. 208. № 2. P. 282–288. https://doi.org/10.1002/jcp.20655
  34. De Toni F., Poglio S., Youcef A.B., Cousin B., Pflumio F., et al., 2011. Human adipose-derived stromal cells efficiently support hematopoiesis in vitro and in vivo: A key step for therapeutic studies // Stem Cells Dev. V. 20. № 12. P. 2127–2138. https://doi.org/10.1089/scd.2011.0044
  35. Deniz I.A., Karbanová J., Wobus M., Bornhäuser M., Wimberger P., et al., 2023. Mesenchymal stromal cell-associated migrasomes: A new source of chemoattractant for cells of hematopoietic origin // Cell Commun. Signal. V. 21. № 1. Art. 36.
  36. https://doi.org/10.1186/s12964-022-01028-6
  37. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., et al., 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. V. 8. № 4. P. 315–317. https://doi.org/10.1080/14653240600855905
  38. Fathi E., Mesbah-Namin S.A., Vietor I., Farahzadi R., 2022. Mesenchymal stem cells cause induction of granulocyte differentiation of rat bone marrow C-kit+ hematopoietic stem cells through JAK3/STAT3, ERK, and PI3K signaling pathways // Iran. J. Basic Med. Sci. V. 25. № 10. P. 1222–1227. https://doi.org/10.22038/IJBMS.2022.66737.14633
  39. Friedenstein A.J., Chailakhyan R.K., Gerasimov U.V., 1987. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers // Cell Tissue Kinet. V. 20. № 3. P. 263–272. https://doi.org/10.1111/j.1365-2184.1987.tb01309.x
  40. Friedenstein A.J., Gorskaja J.F., Kulagina N.N., 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs // Exp. Hematol. V. 4. № 5. P. 267–274.
  41. Fromigué O., Hamidouche Z., Chateauvieux S., Charbord P., Marie P.J., 2008. Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma-derived mesenchymal stem cells // J. Cell Bio-chem. V. 104. № 2. P. 620–628. https://doi.org/10.1002/jcb.21648
  42. Garde M., van der, Pel M., van, Millán Rivero J.E., Graaf-Dijkstra A., de, Slot M.C., et al., 2015. Direct comparison of Wharton’s jelly and bone marrow-derived mesenchymal stromal cells to enhance engraftment of cord blood CD34(+) transplants // Stem Cells Dev. V. 24. № 22. P. 2649–2659. https://doi.org/10.1089/scd.2015.0138
  43. Gençer E.B., Lor Y.K., Abomaray F., El Andaloussi S., Pernemalm M., et al., 2024. Transcriptomic and proteomic profiles of fetal versus adult mesenchymal stromal cells and mesenchymal stromal cell-derived extracellular vesicles // Stem Cell Res. Ther. V. 15. № 1. Art. 77. https://doi.org/10.1186/s13287-024-03683-7
  44. Gerlach J.C., Over P., Turner M.E., Thompson R.L., Foka H.G., et al., 2012. Perivascular mesenchymal progenitors in human fetal and adult liver // Stem Cells Dev. V. 21. № 18. P. 3258–3269. https://doi.org/10.1089/scd.2012.0296
  45. Geyh S., Oz S., Cadeddu R.P., Fröbel J., Brückner B., et al., 2013. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells // Leukemia. V. 27. № 9. P. 1841–1851. https://doi.org/10.1038/leu.2013.193
  46. Geyh S., Rodríguez-Paredes M., Jäger P., Khandanpour C., Cadeddu R.P., et al., 2016. Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia // Leukemia. V. 30. № 3. P. 683–691. https://doi.org/10.1038/leu.2015.325
  47. Geyh S., Rodríguez-Paredes M., Jäger P., Koch A., Bormann F., et al., 2018. Transforming growth factor β1-mediated functional inhibition of mesenchymal stromal cells in myelodysplastic syndromes and acute myeloid leukemia // Haematologica. V. 103. № 9. P. 1462–1471. https://doi.org/10.3324/haematol.2017.186734
  48. Götherström C., West A., Liden J., Uzunel M., Lahesmaa R., Le Blanc K., 2005. Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells // Haematologica. V. 90. № 8. P. 1017–1026.
  49. Guerrero E.N., Vega S., Fu C., León R., de, Beltran D., Solis M.A., 2021. Increased proliferation and differentiation capacity of placenta-derived mesenchymal stem cells from women of median maternal age correlates with telomere shortening // Aging (Albany NY). V. 13. № 22. P. 24542–24559. https://doi.org/10.18632/aging.203724
  50. Guillot P.V., Bari C., de, Dell’Accio F., Kurata H., Polak J., Fisk N.M., 2008. Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources // Differentiation. V. 76. № 9. P. 946–957. https://doi.org/10.1111/j.1432-0436.2008.00279.x
  51. Guillot P.V., Gotherstrom C., Chan J., Kurata H., Fisk N.M., 2007. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC // Stem Cells. V. 25. № 3. P. 646–654. https://doi.org/10.1634/stemcells.2006-0208
  52. Gurevitch O., Slavin S., Resnick I., Khitrin S., Feldman A., 2009. Mesenchymal progenitor cells in red and yellow bone marrow // Folia Biol. (Praha). V. 55. № 1. P. 27–34.
  53. Haga C.L., Boregowda S.V., Booker C.N., Krishnappa V., Strivelli J., et al., 2023. Mesenchymal stem/stromal cells from a transplanted, asymptomatic patient with Fanconi anemia exhibit an aging-like phenotype and dysregulated expression of genes implicated in hematopoiesis and myelodysplasia // Cytotherapy. V. 25. № 4. P. 362–368. https://doi.org/10.1016/j.jcyt.2022.11.003
  54. Han Z.C., Du W.J., Han Z.B., Liang L., 2017. New insights into the heterogeneity and functional diversity of human mesenchymal stem cells // Biomed. Mater. Eng. V. 28. № S1. P. S29–S45. https://doi.org/10.3233/BME-171622
  55. Hanoun M., Zhang D., Mizoguchi T., Pinho S., Pierce H., et al., 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche // Cell. Stem Cell. V. 15. № 3. P. 365–375. https://doi.org/10.1016/j.stem.2014.06.020
  56. Hegyi B., Sági B., Kovács J., Kiss J., Urbán V.S., et al., 2010. Identical, similar or different? Learning about immunomodulatory function of mesenchymal stem cells isolated from various mouse tissues: bone marrow, spleen, thymus and aorta wall // Int. Immunol. V. 22. № 7. P. 551–559. https://doi.org/10.1093/intimm/dxq039
  57. Hiwase S.D., Dyson P.G., To L.B., Lewis I.D., 2009. Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice // Stem Cells. V. 27. № 9. P. 2293–2300. https://doi.org/10.1002/stem.157
  58. Hoogduijn M.J., Crop M.J., Peeters A.M., Osch G.J., van, Balk A.H., et al., 2007. Human heart, spleen, and perirenal fat-derived mesenchymal stem cells have immunomodulatory capacities // Stem Cells Dev. V. 16. № 4. P. 597–604. https://doi.org/10.1089/scd.2006.0110
  59. Huang K., Zhou D.H., Huang S.L., Liang S.H., 2005. [Age-related biological characteristics of human bone marrow mesenchymal stem cells from different age donors] // Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 13. № 6. P. 1049–1053 (in Chinese).
  60. Huo J., Zhang L., Ren X., Li C., Li X., et al., 2020. Multifaceted characterization of the signatures and efficacy of mesenchymal stem/stromal cells in acquired aplastic anemia // Stem Cell Res. Ther. V. 11. № 1. Art. 59. https://doi.org/10.1186/s13287-020-1577-2
  61. In’t Anker P.S., Noort W.A., Scherjon S.A., Kleijburg-van der Keur C., Kruisselbrink A.B., et al., 2003. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential // Haematologica. V. 88. № 8. P. 845–852.
  62. Inra C.N., Zhou B.O., Acar M., Murphy M.M., Richardson J., et al., 2015. A perisinusoidal niche for extramedullary haematopoiesis in the spleen // Nature. V. 527. № 7579. P. 466–471. https://doi.org/10.1038/nature15530
  63. Jones G.N., Moschidou D., Puga-Iglesias T.I., Kuleszewicz K., Vanleene M., et al., 2012. Ontological differences in first compared to third trimester human fetal placental chorionic stem cells // PLoS One. V. 7. № 9. Art. e43395. https://doi.org/10.1371/journal.pone.0043395
  64. Kadekar D., Kale V., Limaye L., 2015. Differential ability of MSCs isolated from placenta and cord as feeders for supporting ex vivo expansion of umbilical cord blood derived CD34(+) cells // Stem Cell Res. Ther. V. 6. Art. 201. https://doi.org/10.1186/s13287-015-0194-y
  65. Katsiani E., Garas A., Skentou C., Tsezou A., Messini C.I., et al., 2016. Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing // Cell Tissue Bank. V. 17. № 3. P. 517–529. https://doi.org/10.1007/s10561-016-9559-4
  66. Khodadi E., Shahrabi S., Shahjahani M., Azandeh S., Saki N., 2016. Role of stem cell factor in the placental niche // Cell Tissue Res. V. 366. № 3. P. 523–531. https://doi.org/10.1007/s00441-016-2429-3
  67. Kordes C., Sawitza I., Götze S., Häussinger D., 2013. Hepatic stellate cells support hematopoiesis and are liver-resident mesenchymal stem cells // Cell Physiol. Biochem. V. 31. № 2–3. P. 290–304. https://doi.org/10.1159/000343368
  68. Kurosawa S., Iwama A., 2020. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions // Inflamm. Regen. V. 40. № 1. Art. 29. https://doi.org/10.1186/s41232-020-00138-3
  69. Larijani B., Aghayan H.R., Goodarzi P., Arjmand B., 2015. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation // Methods Mol. Biol. V. 1283. P. 123–136. https://doi.org/10.1007/7651_2014_101
  70. Lau S.X., Leong Y.Y., Ng W.H., Ng A.W.P., Ismail I.S., et al., 2017. Human mesenchymal stem cells promote CD34+ hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity // Cell Biol. Int. V. 41. № 6. P. 697–704. https://doi.org/10.1002/cbin.10774
  71. Le Y., Fraineau S., Chandran P., Sabloff M., Brand M., et al., 2016. Adipogenic mesenchymal stromal cells from bone marrow and their hematopoietic supportive role: Towards understanding the permissive marrow microenvironment in acute myeloid leukemia // Stem Cell Rev. Rep. V. 12. № 2. P. 235–244. https://doi.org/10.1007/s12015-015-9639-z
  72. Lee G.Y., Jeong S.Y., Lee H.R., Oh I.H., 2019. Age-related differences in the bone marrow stem cell niche generate specialized microenvironments for the distinct regulation of normal hematopoietic and leukemia stem cells // Sci. Rep. V. 9. № 1. Art. 1007. https://doi.org/10.1038/s41598-018-36999-5
  73. Li T., Wu Y., 2011. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche // Bone Marrow Res. V. 2011. Art. 353878. https://doi.org/10.1155/2011/353878
  74. Li X., Bai J., Ji X., Li R., Xuan Y., Wang Y., 2014. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation // Int. J. Mol. Med. V. 34. № 3. P. 695–704. https://doi.org/10.3892/ijmm.2014.1821
  75. Liu M., Yang S.G., Xing W., Lu S.H., Zhao Q.J., et al., 2011. Comparison of hematopoietic supportive capacity between human fetal and adult bone marrow mesenchymal stem cells in vitro // Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 19. № 4. P. 1028–1032.
  76. Martin M.A., Bhatia M., 2005. Analysis of the human fetal liver hematopoietic microenvironment // Stem Cells Dev. V. 14. № 5. P. 493–504. https://doi.org/10.1089/scd.2005.14.493
  77. Massaro F., Corrillon F., Stamatopoulos B., Dubois N., Ruer A., et al., 2023. Age-related changes in human bone marrow mesenchymal stromal cells: Morphology, gene expression profile, immunomodulatory activity and miRNA expression // Front. Immunol. V. 14. Art. 1267550. https://doi.org/10.3389/fimmu.2023.1267550
  78. Méndez-Ferrer S., Michurina T.V., Ferraro F., Mazloom A.R., Macarthur B.D., et al., 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche // Nature. V. 466. № 7308. P. 829–834. https://doi.org/10.1038/nature09262
  79. Michelozzi I.M., Pievani A., Pagni F., Antolini L., Verna M., et al., 2017. Human aplastic anaemia-derived mesenchymal stromal cells form functional haematopoietic stem cell niche in vivo // Br. J. Haematol. V. 179. № 4. P. 669–673. https://doi.org/10.1111/bjh.14234
  80. Mistry J.J., Marlein C.R., Moore J.A., Hellmich C., Wojtowicz E.E., et al., 2019. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection // Proc. Natl Acad. Sci. USA. V. 116. № 49. P. 24610–24619. https://doi.org/10.1073/pnas.1913278116
  81. Nakao N., Nakayama T., Yahata T., Muguruma Y., Saito S., et al., 2010. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: Advantages over bone marrow-derived mesenchymal stem cells // Am. J. Pathol. V. 177. № 2. P. 547–554. https://doi.org/10.2353/ajpath.2010.091042
  82. Nakatani T., Sugiyama T., Omatsu Y., Watanabe H., Kondoh G., Nagasawa T., 2023. Ebf3+ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells // Nat. Commun. V. 14. № 1. Art. 6402. https://doi.org/10.1038/s41467-023-42047-2
  83. Nakatsuka R., Matsuoka Y., Uemura Y., Sumide K., Iwaki R., et al., 2015. Mouse dental pulp stem cells support human umbilical cord blood-derived hematopoietic stem/progenitor cells in vitro // Cell Transplant. V. 24. № 1. P. 97–113. https://doi.org/10.3727/096368913X674675
  84. Omatsu Y., Sugiyama T., Kohara H., Kondoh G., Fujii N., et al., 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche // Immunity. V. 33. № 3. P. 387–399. https://doi.org/10.1016/j.immuni.2010.08.017
  85. O’Neill H.C., Lim H.K., 2023. Skeletal stem/progenitor cells provide the niche for extramedullary hematopoiesis in spleen // Front. Physiol. V. 14. Art. 1148414. https://doi.org/10.3389/fphys.2023.1148414
  86. O’Neill H.C., Lim H.K., Periasamy P., Kumarappan L., Tan J.K.H., O’Neill T.J., 2019. Transplanted spleen stromal cells with osteogenic potential support ectopic myelopoiesis // PLoS One. V. 14. № 10. Art. e0223416. https://doi.org/10.1371/journal.pone.0223416
  87. Ostanin A.A., Petrovskii Y.L., Shevela E.Y., Chernykh E.R., 2011. Multiplex analysis of cytokines, chemokines, growth factors, MMP-9 and TIMP-1 produced by human bone marrow, adipose tissue, and placental mesenchymal stromal cells // Bull. Exp. Biol. Med. V. 151. № 1. P. 133–141. https://doi.org/10.1007/s10517-011-1275-2
  88. Oubari F., Amirizade N., Mohammadpour H., Nakhlestani M., Zarif M.N., 2015. The important role of FLT3-L in ex vivo expansion of hematopoietic stem cells following co-culture with mesenchymal stem cells // Cell J. V. 17. № 2. P. 201–210. https://doi.org/10.22074/cellj.2016.3715
  89. Paciejewska M.M., Maijenburg M.W., Gilissen C., Kleijer M., Vermeul K., et al., 2016. Different balance of Wnt signaling in adult and fetal bone marrow-derived mesenchymal stromal cells // Stem Cells Dev. V. 25. № 12. P. 934–947. https://doi.org/10.1089/scd.2015.0263
  90. Park S., Koh S.E., Hur C.Y., Lee W.D., Lim J., Lee Y.J., 2013. Comparison of human first and third trimester placental mesenchymal stem cell // Cell Biol. Int. V. 37. № 3. P. 242–249. https://doi.org/10.1002/cbin.10032
  91. Pelekanos R.A., Sardesai V.S., Futrega K., Lott W.B., Kuhn M., Doran M.R., 2016. Isolation and expansion of mesenchymal stem/stromal cells derived from human placenta tissue // J. Vis. Exp. V. 6. № 112. Art. 54204. https://doi.org/10.3791/54204
  92. Pendse S., Kale V., Vaidya A., 2022. The intercellular communication between mesenchymal stromal cells and hematopoietic stem cells critically depends on NF-κB signalling in the mesenchymal stromal cells // Stem Cell Rev. Rep. V. 18. № 7. P. 2458–2473. https://doi.org/10.1007/s12015-022-10364-6
  93. Petvises S., Tran V., Hey Y.Y., Talaulikar D., O’Neill T.J., et al., 2022. Extramedullary hematopoiesis: mesenchymal stromal cells from spleen provide an in vitro niche for myelopoiesis // In Vitro Cell Dev. Biol. Anim. V. 58. № 5. P. 429–439. https://doi.org/10.1007/s11626-022-00693-8
  94. Pilz G.A., Ulrich C., Ruh M., Abele H., Schäfer R., et al., 2011. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells // Stem Cells Dev. V. 20. № 4. P. 635–646. https://doi.org/10.1089/scd.2010.0308
  95. Poloni A., Rosini V., Mondini E., Maurizi G., Mancini S., et al., 2008. Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta // Cytotherapy. V. 10. № 7. P. 690–697. https://doi.org/10.1080/14653240802419310
  96. Poon Z., Dighe N., Venkatesan S.S., Cheung A.M.S., Fan X., et al., 2019. Bone marrow MSCs in MDS: Contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy // Leukemia. V. 33. № 6. P. 1487–1500. https://doi.org/10.1038/s41375-018-0310-y
  97. Prasad P., Cancelas J.A., 2024. From marrow to bone and fat: Exploring the multifaceted roles of leptin receptor positive bone marrow mesenchymal stromal cells // Cells. V. 13. № 11. Art. 910. https://doi.org/10.3390/cells13110910
  98. Raman R., Kumar R.S., Hinge A., Kumar S., Nayak R., et al., 2013. p190-B RhoGAP regulates the functional composition of the mesenchymal microenvironment // Leukemia. V. 27. № 11. P. 2209–2219. https://doi.org/10.1038/leu.2013.103
  99. Ryan J.M., Matigian N., Pelekanos R.A., Jesuadian S., Wells C.A., Fisk N.M., 2014. Transcriptional ontogeny of first trimester human fetal and placental mesenchymal stem cells: Gestational age versus niche // Genom. Data. V. 2. P. 382–385. https://doi.org/10.1016/j.gdata.2014.10.016
  100. Ryu J.H., Park M., Kim B.K., Kim Y.H., Woo S.Y., Ryu K.H., 2016. Human tonsil-derived mesenchymal stromal cells enhanced myelopoiesis in a mouse model of allogeneic bone marrow transplantation // Mol. Med. Rep. V. 14. № 4. P. 3045–3051. https://doi.org/10.3892/mmr.2016.5604
  101. Sardesai V.S., Shafiee A., Fisk N.M., Pelekanos R.A., 2017. Avoidance of maternal cell contamination and overgrowth in isolating fetal chorionic villi mesenchymal stem cells from human term placenta // Stem Cells Transl. Med. V. 6. № 4. P. 1070–1084. https://doi.org/10.1002/sctm.15-0327
  102. Sarıkaya A., Aydın G., Özyüncü Ö., Şahin E., Uçkan-Çetinkaya D., Aerts-Kaya F., 2022. Comparison of immune modulatory properties of human multipotent mesenchymal stromal cells derived from bone marrow and placenta // Biotech. Histochem. V. 97. № 2. P. 79–89. https://doi.org/10.1080/10520295.2021.1885739
  103. Sarvar D.P., Effatpanah H., Akbarzadehlaleh P., Shamsasenjan K., 2022. Mesenchymal stromal cell-derived extracellular vesicles: Novel approach in hematopoietic stem cell transplantation // Stem Cell Res. Ther. V. 13. № 1. Art. 202. https://doi.org/10.1186/s13287-022-02875-3
  104. Saxena P., Srivastava J., Rai B., Tripathy N.K., Raza S., et al., 2024. Elevated senescence in the bone marrow mesenchymal stem cells of acquired aplastic anemia patients: A possible implication of DNA damage responses and telomere attrition // Biochim. Biophys. Acta Mol. Basis Dis. V. 1870. № 3. Art. 167025. https://doi.org/10.1016/j.bbadis.2024.167025
  105. Servais S., Baron F., Lechanteur C., Seidel L., Baudoux E., et al., 2023. Multipotent mesenchymal stromal cells as treatment for poor graft function after allogeneic hematopoietic cell transplantation: A multicenter prospective analysis // Front. Immunol. V. 14. Art. 1106464. https://doi.org/10.3389/fimmu.2023.1106464
  106. Seshi B., Kumar S., Sellers D., 2000. Human bone marrow stromal cell: Coexpression of markers specific for multiple mesenchymal cell lineages // Blood Cells Mol. Dis. V. 26. № 3. P. 234–246. https://doi.org/10.1006/bcmd.2000.0301
  107. Sharma V., Rawat S., Gupta S., Tamta S., Sharma R., et al., 2021. Human acquired aplastic anemia patients’ bone-marrow-derived mesenchymal stem cells are not influenced by hematopoietic compartment and maintain stemness and immune properties // Anemia. V. 2021. Art. 6678067. https://doi.org/10.1155/2021/6678067
  108. Signore M., Cerio A.M., Boe A., Pagliuca A., Zaottini V., et al., 2012. Identity and ranking of colonic mesenchymal stromal cells // J. Cell. Physiol. V. 227. № 9. P. 3291–3300. https://doi.org/10.1002/jcp.24027
  109. Singh A.K., Prasad P., Cancelas J.A., 2023. Mesenchymal stromal cells, metabolism, and mitochondrial transfer in bone marrow normal and malignant hematopoiesis // Front. Cell Dev. Biol. V. 11. Art. 1325291. https://doi.org/10.3389/fcell.2023.1325291
  110. Sivaraj K.K., Jeong H.W., Dharmalingam B., Zeuschner D., Adams S., et al., 2021. Regional specialization and fate specification of bone stromal cells in skeletal development // Cell Rep. V. 36. № 2. Art. 109352. https://doi.org/10.1016/j.celrep.2021.109352
  111. Takam Kamga P., Bazzoni R., Dal Collo G., Cassaro A., Tanasi I., et al., 2021. The role of Notch and Wnt signaling in MSC communication in normal and leukemic bone marrow niche // Front. Cell Dev. Biol. V. 8. Art. 599276. https://doi.org/10.3389/fcell.2020.599276
  112. Tang Z.L., Jing W., 2022. [Age-related changes in differentiation of bone marrow mesenchymal stem cells and the activity of Notch signaling pathway] // Shanghai Kou Qiang Yi Xue. V. 31. № 2. P. 120–125 (in Chinese).
  113. Tarnowski M., Koryciak-Komarska H., Czekaj P., Sebesta R., Czekaj T.M., et al., 2007. The comparison of multipotential for differentiation of progenitor mesenchymal-like stem cells obtained from livers of young and old rats // Folia Histochem. Cytobiol. V. 45. № 3. P. 245–254.
  114. Tratwal J., Rojas-Sutterlin S., Bataclan C., Blum S., Naveiras O., 2021. Bone marrow adiposity and the hematopoietic niche: A historical perspective of reciprocity, heterogeneity, and lineage commitment // Best Pract. Res. Clin. Endocrinol. Metab. V. 35. № 4. Art. 101564. https://doi.org/10.1016/j.beem.2021.101564
  115. Van den Heuvel R.L., Versele S.R., Schoeters G.E., Vanderborght O.L., 1987. Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrow of pre- and postnatal mice // Br. J. Haematol. V. 66. № 1. P. 15–20. https://doi.org/10.1111/j.1365-2141.1987.tb06884.x
  116. Ventura Ferreira M.S., Bienert M., Müller K., Rath B., Goecke T., et al., 2018. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta // Stem Cell Res. Ther. V. 9. № 1. Art. 28. https://doi.org/10.1186/s13287-017-0757-1
  117. Wagner W., Roderburg C., Wein F., Diehlmann A., Frankhauser M., et al., 2007. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors // Stem Cells. V. 25. № 10. P. 2638–2647. https://doi.org/10.1634/stemcells.2007-0280
  118. Wang X.Y., Lan Y., He W.Y., Zhang L., Yao H.Y., et al., 2008. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos // Blood. V. 111. № 4. P. 2436–2443. https://doi.org/10.1182/blood-2007-07-099333
  119. Wilson A., Shehadeh L.A., Yu H., Webster K.A., 2010. Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells // BMC Genomics. V. 11. Art. 229. https://doi.org/10.1186/1471-2164-11-229
  120. Wolf N.S., Bertoncello I., Jiang D., Priestley G., 1995. Developmental hematopoiesis from prenatal to young-adult life in the mouse model // Exp. Hematol. V. 23. № 2. P. 142–146.
  121. Wu C.H., Weng T.F., Li J.P., Wu K.H., 2024. Biology and therapeutic properties of mesenchymal stem cells in leukemia // Int. J. Mol. Sci. V. 25. № 5. Art. 2527. https://doi.org/10.3390/ijms25052527
  122. Wu K.H., Tsai C., Wu H.P., Sieber M., Peng C.T., Chao Y.H., 2013. Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: Enhance hematopoiesis after cord blood transplantation // Cell Transplant. V. 22. № 11. P. 2041–2051. https://doi.org/10.3727/096368912X663533
  123. Wu Y., Aanei C.M., Kesr S., Picot T., Guyotat D., Campos Catafal L., 2017. Impaired expression of focal adhesion kinase in mesenchymal stromal cells from low-risk myelodysplastic syndrome patients // Front. Oncol. V. 7. Art. 164. https://doi.org/10.3389/fonc.2017.00164
  124. Wu Y., Yu J., Zhang L., Luo Q., Xiao J.W., et al., 2008. [Hematopoiesis support of mesenchymal stem cells in children with aplastic anemia] // Zhongguo Dang Dai Er Ke Za Zhi. V. 10. № 4. P. 455–459 (in Chinese).
  125. Xia C., Wang T., Cheng H., Dong Y., Weng Q., et al., 2020. Mesenchymal stem cells suppress leukemia via macrophage-mediated functional restoration of bone marrow microenvironment // Leukemia. V. 34. № 9. P. 2375–2383. https://doi.org/10.1038/s41375-020-0775-3
  126. Xiao Y., Jiang Z.J., Pang Y., Li L., Gao Y., et al., 2013. Efficacy and safety of mesenchymal stromal cell treatment from related donors for patients with refractory aplastic anemia // Cytotherapy. V. 15. № 7. P. 760–766. https://doi.org/10.1016/j.jcyt.2013.03.007
  127. Yang H.M., Cho M.R., Sung J.H., Yang S.J., Nam M.H., et al., 2011. The effect of human fetal liver-derived mesenchymal stem cells on CD34+ hematopoietic stem cell repopulation in NOD/Shi-scid/IL-2Rã(null) mice // Transplant. Proc. V. 43. № 5. P. 2004–2008. https://doi.org/10.1016/j.transproceed.2011.02.025
  128. Yehudai-Resheff S., Attias-Turgeman S., Sabbah R., Gabay T., Musallam R., et al., 2019. Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells // Int. J. Cancer. V. 144. № 9. P. 2279–2289. https://doi.org/10.1002/ijc.32063
  129. Yi X., Chen F., Liu F., Peng Q., Li Y., et al., 2020. Comparative separation methods and biological characteristics of human placental and umbilical cord mesenchymal stem cells in serum-free culture conditions // Stem Cell Res. Ther. V. 11. № 1. Art. 183. https://doi.org/10.1186/s13287-020-01690-y
  130. Yu Y., Valderrama A.V., Han Z., Uzan G., Naserian S., Oberlin E., 2021. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3+ T reg induction capacity // Stem Cell Res. Ther. V. 12. № 1. Art. 138. https://doi.org/10.1186/s13287-021-02176-1
  131. Zhang Y., Li C.D., Jiang X.X., Li H.L., Tang P.H., Mao N., 2004. Comparison of mesenchymal stem cells from human placenta and bone marrow // Chin. Med. J. (Engl). V. 117. № 6. P. 882–887.
  132. Zhang Y.Z., Zhao D.D., Han X.P., Jin H.J., Da W.M., Yu L., 2008. In vitro study of biological characteristics of mesenchymal stem cells in patients with low-risk myelodysplastic syndrome // Zhongguo Shi Yan Xue Ye Xue Za Zhi. V. 16. № 4. P. 813–818.
  133. Zhao M., Tao F., Venkatraman A., Li Z., Smith S.E., et al., 2019. N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells // Cell Rep. V. 26. № 3. P. 652–669.E6. https://doi.org/10.1016/j.celrep.2018.12.093

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. The role of MSCs in the organization of the hematopoietic microenvironment in the organs of embryonic and definitive hematopoiesis.

Baixar (48KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025