Исследование микроструктуры синтезированных in situ медь-цинковых катализаторов гидродеоксигенации глицерина до 1,2-пропандиола

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Исследованы структурные особенности синтезированных in situ в условиях жидкофазного гидрогенолиза глицерина до 1,2-пропандиола медь-цинковых катализаторов с различным содержанием меди (от 6.25 до 100 мас%). Установлено, что проведение процесса формирования катализатора в реакционной среде в диапазоне концентраций 12.5–25 мас% Cu обеспечивает как достижение минимальных размеров Cu-зерен (50–150 нм), устойчивый анизотропный рост ZnO (длина 80–230 нм), так и формирование тонкой оксидной оболочки на поверхности частиц Cu. Результатом является максимальная каталитическая активность и селективность формирующейся in situ каталитической системы.

Full Text

Restricted Access

About the authors

К. И. Чернышев

НИЦ «Курчатовский институт»

Author for correspondence.
Email: a.vasiliev56@gmail.com
ORCID iD: 0009-0005-4770-5096

к.ф.-м.н.

Russian Federation, 123182, г. Москва, пл. Академика Курчатова, д. 1

Ю. И. Порукова

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: a.vasiliev56@gmail.com
ORCID iD: 0000-0003-3452-8009

к.х.н.

Russian Federation, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29

A. Л. Максимов

Институт нефтехимического синтеза им. А. В. Топчиева РАН

Email: a.vasiliev56@gmail.com
ORCID iD: 0000-0001-9297-4950

д.х.н., акад. РАН

Russian Federation, 119991, ГСП-1, г. Москва, Ленинский пр., д. 29

A. Л. Васильев

НИЦ «Курчатовский институт»; Московский физико-технический институт (национальный исследовательский университет)

Email: a.vasiliev56@gmail.com
ORCID iD: 0000-0001-7884-4180
Russian Federation, 123182, г. Москва, пл. Академика Курчатова, д. 1; 141701, Московская обл., г. Долгопрудный, Институтский пер., д. 9

References

  1. Ten Dam J., Hanefeld U. Renewable chemicals: Dehydroxylation of glycerol and polyols // ChemSusChem. 2011. V. 4. P. 1017–1034. https://doi.org/10.1002/cssc.201100162
  2. Bienholz A., Hofmann H., Claus P. Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: Correlation between the copper surface area and the catalystʹs activity // Appl. Catal. A: General. 2011. V. 391 (1). P. 153–157. https://doi.org/10.1016/j.apcata.2010.08.047
  3. Zhu S., Gao X., Zhu Y., Fan W., Wang J., Li Y. A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1,2-propanediol // Catal. Sci. Technol. 2015. V. 5 (2). P. 1169–1180. https://doi.org/10.1039/c4cy01148a
  4. Huang Z., Cui F., Kang H., Chen J., Xia C. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol: Effect of residual sodium // Appl. Catal. A: General. 2009. V. 366 (2). P. 288–298. https://doi.org/10.1016/j.apcata.2009.07.017
  5. Li X., Xiang M., Wu D. Hydrogenolysis of glycerol over bimetallic CuNi catalysts supported on hierarchically
  6. porous SAPO-11 zeolite // Catal. Commun. 2019. V. 119. P. 170–175. https://doi.org/10.1016/j.catcom.2018.11.004
  7. Niu L., Wei R., Jiang F., Zhou M., Liu C., Xiao G. Selective hydrogenolysis of glycerol to 1,2-propanediol on the modified ultrastable Y-type zeolite dispersed copper catalyst // React. Kinet. Mech. Catal. 2014. V. 113 (2). P. 543–556. https://doi.org/10.1007/s11144-014-0745-8
  8. Kant A., He Y., Jawad A., Li X., Rezaei F., Smith J. D., Rownaghi A.A. Hydrogenolysis of glycerol over Ni, Cu, Zn, and Zr supported on H-beta // Chem. Eng. J. 2017. V. 317. P. 1–8. https://doi.org/10.1016/j.cej.2017.02.064
  9. Mane R., Potdar A., Jeon Y., Rode C. Calcination temperature impacting the structure and activity of CuAl catalyst in aqueous glycerol hydrogenolysis to 1,2-propanediol // Top. Catal. 2025. V. 68. 318–331. https://doi.org/10.1007/s11244-024-02032-5
  10. Zhao H., Zheng L., Li X., Chen P., Hou Z. Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: A short review // Catal. Today. 2020.V. 355. P. 84–95. https://doi.org/10.1016/j.cattod.2019.03.011
  11. Mane R., Jeon Y., Rode C. A. A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1,2-propanediol with and without external hydrogen // Green Chem. 2022. V. 24 (18). P. 6751–6781. https://doi.org/10.1039/D2GC01879A
  12. Du Y., Wang C., Jiang H., Chen C., Chen R. Insights into deactivation mechanism of Cu–ZnO catalyst in hydrogenolysis of glycerol to 1,2-propanediol // J. Ind. Eng. Chem. 2016. V. 35. P. 262–267. https://doi.org/10.1016/j.jiec.2016.01.002
  13. Balaraju M., Rekha V., Sai Prasad P. S., Prasad R. B. N., Lingaiah N. Selective hydrogenolysis of glycerol to 1,2-propanediol over Cu–ZnO catalysts // Catal. Lett. 2008. V. 126. P. 119–124. https://doi.org/10.1007/s10562-008-9590-6
  14. Omar L., Perret N., Daniele S. Self-assembled hybrid ZnO nanostructures as supports for copper-based catalysts in the hydrogenolysis of glycerol // Catalysts. 2021. V. 11. P. 516. https://doi.org/10.3390/catal11040516
  15. Gao Q., Xu B., Tong Q., Fan Y. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu–ZnO catalysts in fixed-bed reactor // Biosci. Biotechnol. Biochem. 2015. V. 80. P. 215–220. https://doi.org/10.1080/09168451.2015.1088372
  16. Meher L. C., Gopinath R., Naik S. N., Dalai A. K. Catalytic hydrogenolysis of glycerol to propylene glycol over mixed oxides derived from a hydrotalcite-type precursor // Ind. Eng. Chem. Res. 2009. V. 48. P. 1840–1846. https://doi.org/10.1021/ie8011424
  17. Wang S., Liu H. Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts // Catal. Lett. 2007. V. 117. P. 62–67. https://doi.org/10.1007/s10562-007-9106-9
  18. Porukova I., Samoilov V., Lavrentev V., Ramazanov D., Maximov A. Hydrogenolysis of bio-glycerol over in situ generated nanosized Cu–ZnO catalysts // Catalysts. 2024. V. 14. P. 908. https://doi.org/10.3390/catal14120908
  19. Porukova I., Samoilov V., Ramazanov D., Kniazeva M., Maximov A. In situ-generated, dispersed cu catalysts for the catalytic hydrogenolysis of glycerol // Molecules. 2022. V. 27. P. 8778. https://doi.org/10.3390/molecules27248778
  20. Albertsso J., Abrahams S. C., Kvick A. Structural and thermal dependence of normal-mode condensations in K2TeBr6 // Acta Crystallogr. B. 1989. V. 45. P. 34–40. https://doi.org/10.1107/S0108768188010109
  21. Vainshtein B. K., Zuyagin B. B., Avilov A. S. // Electron Diffraction Techniques / Ed. by J. M. Cowley. Oxford Univ. Press, Oxford, 1992. V. 1. Chap. 6. P. 216.
  22. Якимов И. С., Дубинин П. С., Пиксина О. Е. Регуляризация метода ссылочных интенсивностей для количественного рентгенофазового анализа поликристаллов // Журн. Сиб. фед. ун-та. Химия. 2009. Т. 2. С. 71–80.
  23. Kirfel A., Eichhorn K. D. Accurate structure analysis with synchrotron radiation // Acta Crystallogr. A. 1990. V. 46 (4). P. 271–284. https://doi.org/10.1107/s0108767389012596
  24. Schmahl N.G.,Eikerling G .F. Ueber kryptomodifikationen des Cu(II)-oxids // Zeitschrift fuer Physikalische Chemie (Frankfurt Am Main). 1968. V. 62. P. 268–279. https://doi.org/10.1524/zpch.1968.62.5_6.268
  25. Massarotti V., Capsoni D., Bini M., Altomare A., Moliterni A. G. G. X-ray powder diffraction ab initio structure solution of materials from solid state synthesis: The copper oxide case // Zeitschrift fuer Kristallographie. 1998. V. 213. P. 259–265. https://doi.org/10.1524/zkri.1998.213.5.259

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cu–ZnO sample with 6.25% Cu content. a — bright-field TEM image; b — results of elemental EDX mapping; c — HRTEM image of a ZnO particle; d — electron diffraction pattern of the particle conglomerate shown in a.

Download (496KB)
3. Fig. 2. Histograms of particle size distribution.

Download (510KB)
4. Fig. 3. X-ray images of samples.

Download (128KB)
5. Fig. 4. Cu–ZnO sample with 12.5% ​​Cu content. a — bright-field TEM image, b — results of elemental EDX mapping.

Download (467KB)
6. Fig. 5. a — HRTEM image of a Cu particle with a Cu2O shell; b — EDX map of a section of the copper particle highlighted in red and the shell — in turquoise; c — two-dimensional Fourier spectrum obtained from the shell region highlighted by the square in a; g — image of a section of the crystal lattice after Fourier filtering.

Download (390KB)
7. Fig. 6. Cu–ZnO sample with 25% Cu content. a — bright-field TEM image, b — EDX mapping results.

Download (590KB)
8. Fig. 7. HRTEM image of a group of ZnO particles. The upper inset shows an enlarged image of the crystal lattice, and below is a two-dimensional Fourier spectrum obtained from this region.

Download (395KB)
9. Fig. 8. Sample with 25% Cu. a — HRTEM image of a particle, twins in the Cu core are clearly visible, the CuO shell is indicated by an arrow; b — element distribution map obtained by the EDX method; c — HRTEM image of the Cu particle surface with c-CuO ​​and m-CuO layers, the red square highlights the region enlarged by d, with a crystallite (in the yellow square), from which a two-dimensional Fourier spectrum was obtained — d; f — Cu particle surface with an inclined Cu–CuO boundary, squares highlight the regions of the crystal lattice analysis; g — two-dimensional Fourier spectrum of an m-CuO particle; h — two-dimensional Fourier spectrum of a c-CuO ​​particle.

Download (896KB)
10. Fig. 9. Cu–ZnO sample with 25% Cu content (ex situ). a — bright-field STEM image, b — EDX mapping.

Download (440KB)
11. Fig. 10. HRTEM image of a ZnO particle with zone axis B = [2110], inset – two-dimensional Fourier spectrum from the region highlighted by the red square.

Download (249KB)
12. Fig. 11. a — HRTEM image of a ZnO particle and a Cu2O particle; corresponding two-dimensional Fourier spectra: b — from a ZnO particle, zone axis B = [2110]; c — Cu2O particle, zone axis B = [101]; d — enlarged image of the crystal lattice of a Cu2O particle after Fourier filtering.

Download (372KB)
13. Fig. 12. Cu–ZnO sample with 50% Cu content. a — bright-field TEM image, b — EDX mapping.

Download (693KB)
14. Fig. 13. Cu–ZnO sample (repeat) with 50% Cu content. a — TEM image, b — EDX mapping.

Download (379KB)
15. Fig. 14. Sample with 75% Cu precursor. a — bright-field TEM image of a group of sample particles; b — EDX map of element distribution; c — enlarged image of a Cu particle, arrows indicate an island of m-CuO, squares indicate regions of Fourier analysis: region 1 — c-CuO, region 2 — m-CuO; g — two-dimensional Fourier spectrum of region 1, corresponding to the zone axis B = [011] fcc-CuO; d — image of the crystal lattice of region 1 after Fourier filtering; e — two-dimensional Fourier spectrum of region 2, corresponding to the zone axis B = [112] m-CuO; g — image of the crystal lattice of region 2 after Fourier filtering, a high density of defects is noted.

Download (721KB)
16. Fig. 15. Cu2O particle in the sample. a — HRTEM image, arrows indicate c-CuO ​​islands with the zone axis B = [101]; b — the corresponding two-dimensional Fourier spectrum obtained from the particle region; c — HRTEM image of a c-CuO ​​island on the surface of a Cu2O particle after Fourier filtration; d — the corresponding two-dimensional Fourier spectrum, zone axis B = [101].

Download (221KB)
17. Fig. 16. HRTEM image of ZnO nanoparticle.

Download (218KB)
18. Fig. 17. Sample with 100% Cu precursor. a — bright-field STEM image of one of the sample particles; b — enlarged image of the particle demonstrating the edge morphology; c — EDX map of the element distribution, the CuOx oxide shell is visible; d — HRTEM image of the oxide shell, the m-CuO island is highlighted by a square, the inset is a two-dimensional Fourier spectrum of the highlighted region, corresponding to the zone axis B = [011] m-CuO.

Download (480KB)

Copyright (c) 2025 Russian Academy of Sciences