FREE BOUNDARY METHOD FOR COUPLED PROBLEMS OF GAS AND SOLID DYNAMICS
- Authors: Menshov I.S1
-
Affiliations:
- Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
- Issue: Vol 64, No 8 (2024)
- Pages: 1546-1560
- Section: Mathematical physics
- URL: https://jdigitaldiagnostics.com/0044-4669/article/view/665040
- DOI: https://doi.org/10.31857/S0044466924080171
- EDN: https://elibrary.ru/XZTYNI
- ID: 665040
Cite item
Abstract
This paper presents a new approach to numerical modeling of gas flow around stationary and moving rigid bodies, allowing for the use of Eulerian grids that are not tied to the geometry of the body. The bodies are assumed to be absolutely rigid and undeformable, with their elastic properties disregarded. The gas is inviscid and non-heat-conducting, described by compressible fluid equations. The proposed approach is based on averaging the equations of the original model over a small spatial filter. This results in a system of averaged equations that includes an additional quantity — the solid volume fraction parameter — whose spatial distribution digitally represents the geometry of the body (analogous to an order function). This system of equations operates across the entire space. Under this approach, the standard boundaryvalue problem within the gas region is effectively reduced to a Cauchy problem over the entire space. For a one-dimensional model, the numerical solution of the averaged equations is considered using Godunov’s method. In intersected cells, a discontinuous solution is introduced, leading to a compound Riemann problem that describes the decay of the initial discontinuity in the presence of a confining wall. It is shown that the approximation of the numerical flux for the compound Riemann problem solution ensures transport of the order function without numerical dissipation.
About the authors
I. S Menshov
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
Email: menshov@kiam.ru
Moscow, Russia
References
- Годунов С. К., Забродин А. В., Иванов М. Я., Крайко А. Н., Прокопов Г. П. Численное решение многомерных задач газовой динамики. М. : Издательство «Наука», 1976. 400 с.
- Rider W. J., Kother D. B. Reconstructing volume tracking // J. Comput. Phys. 1998. V 141. P. 112—152.
- Hirt C. W., Nichols B. D. Volume of fluid (VOF) method for dynamics of free boundaries // J. Comput. Phys. 1981. V 39. P. 201-225 .
- Osher S., Sethian J. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations// J. Comput. Phys. 1988. V. 79. P. 12-49.
- Mulder W., Osher S., Sethian J. Computing interface motion in compressible gas dynamics //J. Comput. Phys. 1992. V. 100. P. 209-228.
- Mittal R., Iaccarino G. Immersed boundary methods//Annual Review of Fluid Mechanics. 2005. V. 37. P. 239-261.
- Sambasivan S. K., Udaykumar H. S. Ghost fluid method for strong shock interactions. Part 2: Immersed solid boundaries// AIAA J. 2009. V. 47. P. 2923-2937.
- Baer M., Nunziato J. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials //J. Multiph Flow. 1986. V. 12. P. 861-89.
- Favrie N., Gavrilyuk S., Saurel R. Solid-fluid diffuse interface model in cases of extreme deformations //J. Comput. Phys. 2009. V. 228. P. 6037-6077 .
- Ndanou S., Favrie N., Gavrilyuk S. Multi-solid and multi-fluid diffuse interface model: applications to dynamic fracture and fragmentation // J. Comput. Phys. 2015. V. 295. P. 523-555.
- Favrie N., Gavrilyuk S. Diffuse interface model for compressible fluid—compressible elastic-plastic solid interaction // J. Comput. Phys. 2012. V. 231. P. 2695-2723 .
- Kemm F., Gaburro E., Thein F., Dumbser M. A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer—Nunziato model. Computers and Fluids. 2020. V 204. P. 104—536
- Dal Maso G., LeFloch P., Murat F. Definition and weak stability of nonconservative products// J. Math. Pures Appl. 1995. V 74. P. 483-548.
- Peskin C. Flow patterns around heart valves: a numerical method //J. Comput. Phys. 1972. V 10. P. 252-271.
- Angot P., Bruneau C. H., Fabrie P. A penalization method to take into account obstacles in incompressible viscous flows // Numer. Math. 1999. V. 81. P. 497-520.
- Абалакин И. В., Васильев О. В., Жданова Н. С. , Козубская Т. К. Метод характеристических штрафных функций для численного моделирования сжимаемых течений на неструктурированных сетках // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 8. C. 1336-1352.
- Меньшов И. С., Корнев М. А. Метод свободной границы для численного решения уравнений газовой динамики в областях с изменяющейся геометрией // Матем. моделирование. 2014. T. 26. № 5. С. 99-112.
- Меньшов И. С., Павлухин П.В. Эффективный параллельный метод сквозного счета задач аэродинамики на несвязных декартовых сетках // Ж. вычисл. матем. и матем. физ. 2016. Т. 56. № 9. С. 1677-1691.
- Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сборник. 1957. 47:3. С. 271-306.
- Igor Menshov, Pavel Zakharov. On the composite Riemann problem for multi-material fluid flows // Internat. Journal for Numerical Methods in Fluids.2014. V. 76(2). P.109-127.
- Menshov I. S., Serezhkin I. S. Numerical Model of Multiphase Flows Based on Sub-Cell Resolution of Fluid Interfaces // Comput. Math.and Math. Phys. 2022. V. 62. No. 10. Р. 1723-1742.
- Chao Zhang, Igor Menshov. Using the composite Riemann problem solution for capturing interfaces in compressible two-phase flows // Appl. Math.and Comput. 2019. V. 363 .
- Toro E. Riemann solvers and numerical methods for fluid dynamics. Springer. 2009. Р. 719.
- Batten P., Clarke N., Lambert C., Causon D.M. On the choice of wavespeeds for the HLLC Riemann solver. 1997. V. 18. No6. P. 1553-1570.
- Sod G. A. A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws // J. Comput. Phys. 1978 V. 27 (1): Р. 1-31.
Supplementary files
