Eigenvalues of non-Hermitian banded Toeplitz matrices approaching simple points of the limiting set

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

For large non-Hermitian banded Toeplitz matrices, it is well known that their eigenvalues cluster along a limiting set, which is formed by a finite union of closed analytic arcs. We consider general non-Hermitian banded Toeplitz matrices and extend the simple-loop method to obtain individual asymptotic expansions for eigenvalues approaching simple and non-degenerate points of the limiting set as the matrix order increases to infinity. We also develop an algorithm to effectively compute these expansions.

About the authors

M. Bogoya

Universidad del Valle

Email: johan.bogoya@correounivalle.edu.co
Cali, Colombia

S. M Grudsky

CINVESTAV-IPN; Southern Federal University, Regional Mathematical Center

Email: grudsky@math.cinvestav.mx
CDMX, Mexico; Rostov-on-Don, Russia

References

  1. Tyrtyshnikov E.E. A unifying approach to some old and new theorems on distribution and clustering // Linear Algebra Appl. 232 (1996) 1-43.
  2. Böttcher A., Grudsky S.M. Spectral properties of banded Toeplitz matrices // Society for Industrial and Applied Mathematics (SIAM), 2005.
  3. Böttcher A., Silbermann B. Analysis of Toeplitz operators, 2nd Edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006.
  4. Grenander U., Szego G. Toeplitz forms and their applications, 2nd Edition, California Monographs in Mathematical Sciences, Chelsea Publishing Co., New York, 1984.
  5. Schmidt P., Spitzer F. The Toeplitz matrices of an arbitrary Laurent polynomial // Math. Scand. 8 (1960) 15-38.
  6. Böttcher A., Silbermann B. Introduction to large truncated Toeplitz matrices, Universitext, Springer-Verlag, New York, 1999.
  7. Böttcher A., Gasca J., Grudsky S.M., Kozak A.V. Eigenvalue clusters of large tetradiagonal Toeplitz matrices // Integr. Equat. Oper. Th. 93, Paper No. 8 (2021).
  8. Ullman J.L. A problem of Schmidt and Spitzer, Bull. Amer. Math. Soc. 73 (1967) 883-885.
  9. Bogoya M., Gasca J., Grudsky S.M. Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices // J. Spectr. Theory 15 (1) (2025) 441-477.
  10. Böttcher A., Grudsky S.M., Maximenko E.A. Inside the eigenvalues of certain Hermitian Toeplitz band matrices // J. Comput. Appl. Math. 233 (9) (2010) 2245-2264.
  11. Bogoya M., Böttcher, A., Grudsky S.M., Maximenko E.A. Asymptotics of the eigenvalues and eigenvectors of Toeplitz matrices // Sb. Mat. 208 (11) (2017) 4-28.
  12. Bogoya M., Böttcher A., Grudsky S.M. Asymptotic eigenvalue expansions for toeplitz matrices with certain Fisher-Hartwig symbols // J. Math. Sci. 271 (2) (2023) 176-196.
  13. Ekström S.-E., Garoni C., Serra-Capizzano S. Are the eigenvalues of banded symmetric Toeplitz matrices known in almost closed form? // Exper. Math. 27 (4) (2018) 478-487.
  14. Ekström S.-E., Garoni C. A matrix-less and parallel interpolation-extrapolation algorithm for computing the eigenvalues of preconditioned banded symmetric Toeplitz matrices // Numer. Algorithms 80 (2019) 819-848.
  15. Ekström S.-E., Vassalos P. A matrix-less method to approximate the spectrum and the spectral function of Toeplitz matrices with real eigenvalues // Numer. Algorithms 89 (2022) 701-720.
  16. Widom H. Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, in: Topics in operator theory: Ernst D. Hellinger memorial volume, Vol. 48 of Oper. Theory Adv. Appl., Birkhäuser, Basel, 1990, pp. 387-421.
  17. Bolten M., Ekström S.-E., Furet I., Serra-Capizzano S. Toeplitz momentary symbols: Definition, results, and limitations in the spectral analysis of structured matrices // Linear Algebra Appl. 651 (2022) 51-82.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences