Prospects for the Use of Antibody-Drug Conjugates in Cancer Therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Today, cancer continues to be one of the most dangerous diseases, annually causing the deaths of >9 million people in the world. Therefore, new and more effective methods of cancer therapy are in demand. Monoclonal antibody-based immunotherapy has already shown its effectiveness; and antibody-drug conjugates (ADC), as one of its successful variants, have significant and not yet fully realized potential. ADCs are monoclonal antibodies bound by linkers to cytotoxic drugs. In many clinical trials and already in standard clinical practice ADCs have demonstrated significant advantages over combination therapy with unmodified antibodies and chemotherapy drugs. Due to new achievements in the field of molecular immunology and biotechnology, the potential of ADCs is assessed as a breakthrough, which will allow them to become the most sought-after anticancer drugs in the coming years. Owing to ADC, it has become possible to deliver drugs to tumor cells in a targeted manner without significant toxic effects on healthy tissues and organs. To date, 15 ADC drugs have been approved worldwide for use in clinic, and more than a hundred more drugs of this class are at various stages of clinical trials. At the same time, therapy using ADC is associated with certain side effects and limited efficacy, and therefore there is a need to develop more advanced conjugates. This review examines the history of the development of ADC as a therapeutic class of drugs, their structure, targets and mechanism of action. It also outlines the prospects and directions for further development of ADCs.

Full Text

Restricted Access

About the authors

A. O. Makarova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: khol@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Leninskie Gory 1, Moscow, 119991

E. V. Svirshchevskaya

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: khol@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

M. M. Titov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Email: khol@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997

S. M. Deyev

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Sechenov First Moscow State Medical University; National Research Center “Kurchatov Institute”

Email: khol@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Trubetskaya 8/2, Moscow, 119992; pl. Kurchatova 1, Moscow, 123182

R. V. Kholodenko

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Real Target LLC

Author for correspondence.
Email: khol@mail.ru
Russian Federation, ul. Tekstilshchikov 3/3, Troitsk, Moscow Region, 108841

References

  1. Chen S., Cao Z., Prettner K., Kuhn M., Yang J., Jiao L., Wang Z., Li W., Geldsetzer P., Bärnighausen T., Bloom D.E., Wang C. // JAMA Oncol. 2023. V. 9. P. 465– 472. https://doi.org/10.1001/jamaoncol.2022.7826
  2. Amjad M.T., Chidharla A., Kasi A. // StatPearls: StatPearls Publishing, 2023.
  3. Esfahani K., Roudaia L., Buhlaiga N., Del Rincon S.V., Papneja N., Miller W.H., Jr. // Curr. Oncol. 2020. V. 27. P. 87–97. https://doi.org/10.3747/co.27.5223
  4. Martinelli E., De Palma R., Orditura M., De Vita F., Ciardiello F. // Clin. Exp. Immunol. 2009. V. 158. P. 1–9. https://doi.org/10.1111/j.1365-2249.2009.03992.x
  5. Yu S., Liu Q., Han X., Qin S., Zhao W., Li A., Wu K. // Exp. Hematol. Oncol. 2017. V. 6. P. 31. https://doi.org/10.1186/s40164-017-0091-4
  6. Doronin I.I., Vishnyakova P.A., Kholodenko I.V., Ponomarev E.D., Ryazantsev D.Y., Molotkovskaya I.M., Kholodenko R.V. // BMC Cancer. 2014. T. 14. P. 295. https://doi.org/10.1186/1471-2407-14-295
  7. Sterner R.C., Sterner R.M. // Blood Cancer J. 2021. V. 11. https://doi.org/10.1038/s41408-021-00459-7
  8. Fu Z., Li S., Han S., Shi C., Zhang Y. // Signal Transduct. Target Ther. 2022. V. 7. P. 93. https://doi.org/10.1038/s41392-022-00947-7
  9. Li J.H., Liu L., Zhao X.H. // Biomed. Pharmacother. 2024. V. 177. P. 117106. https://doi.org/10.1016/j.biopha.2024.117106
  10. Sasso J.M., Tenchov R., Bird R., Iyer K.A., Ralhan K., Rodriguez Y., Zhou Q.A. // Bioconjug. Chem. 2023. V. 34. P. 1951–2000. https://doi.org/10.1021/acs.bioconjchem.3c00374
  11. Petersen B.H., DeHerdt S.V., Schneck D.W., Bumol T.F. // Cancer Res. 1991. V. 51. P. 2286−2290.
  12. Trail P.A., Willner D., Lasch S.J., Henderson A.J., Hofstead S., Casazza A.M., Firestone R.A., Hellström I., Hellström K.E. // Science. 1993. V. 261. P. 212–215. https://doi.org/10.1126/science.8327892
  13. Beck A., Goetsch L., Dumontet C., Corvaïa N. // Nat. Rev. Drug Discov. 2017. V. 16. P. 315–337. https://doi.org/10.1038/nrd.2016.268
  14. Sievers E.L., Larson R.A., Stadtmauer E.A., Estey E., Löwenberg B., Dombret H., Karanes C., Theobald M., Bennett J.M., Sherman M.L., Berger M.S., Eten C.B., Loken M.R., van Dongen J.J., Bernstein I.D., Appelbaum F.R., Mylotarg Study Group // J. Clin. Oncol. 2001. V. 19. P. 3244–3254. https://doi.org/10.1200/JCO.2001.19.13.3244
  15. Guerra V.A., DiNardo C., Konopleva M. // Best Pract. Res. Clin. Haematol. 2019. V. 32. P. 145–153. https://doi.org/10.1016/j.beha.2019.05.008
  16. Lambert J.M., Chari R.V. // J. Med. Chem. 2014. V. 57. P. 6949–6964. https://doi.org/10.1021/jm500766w
  17. Baah S., Laws M., Rahman K.M. // Molecules. 2021. V. 26. P. 2943. https://doi.org/10.3390/molecules26102943
  18. Wang Z., Li H., Gou L., Li W., Wang Y. // Acta Pharm. Sin. B. 2023. V. 13. P. 4025–4059. https://doi.org/10.1016/j.apsb.2023.06.015
  19. Bhushan A., Misra P. // Curr. Oncol. Rep. 2024. V. 26. P. 1224–1235. https://doi.org/10.1007/s11912-024-01582-x
  20. Chis A.A., Dobrea C.M., Arseniu A.M., Frum A., Rus L.L., Cormos G., Georgescu C., Morgovan C., Butuca A., Gligor F.G., Vonica-Tincu A.L. // Int. J. Mol. Sci. 2024. V. 25. P. 6969. https://doi.org/10.3390/ijms25136969
  21. Riccardi F., Dal Bo M., Macor P., Toffoli G. // Front. Pharmacol. 2023. V. 14. P.1274088. https://doi.org/10.3389/fphar.2023.1274088
  22. Staudacher A.H., Brown M.P. // Br. J. Cancer. 2017. V. 117. P. 1736–1742. https://doi.org/10.1038/bjc.2017.367
  23. Kroemer G., Galassi C., Zitvogel L. // Nat. Immunol. 2022. V. 23. P. 487–500. https://doi.org/10.1038/s41590-022-01132-2
  24. Bauzon M., Drake P.M., Barfield R.M., Cornali B.M., Rupniewski I., Rabuka D. // Oncoimmunol. 2019. V. 8. P. 1565859. https://doi.org/10.1080/2162402X.2019.1565859
  25. Janke C., Magiera M.M. // Nat. Rev. Mol. Cell Biol. 2 020. V. 21. P. 307–326. https://doi.org/10.1038/s41580-020-0214-3
  26. Burris H.A. // Am. Soc. Clin. Oncol. Educ. Book. 2012. P. 159–161. https://doi.org/10.14694/EdBook_AM.2012.32.109
  27. Schwach J., Abdellatif M., Stengl A. // Front Biosci. (Landmark Ed). 2022. V. 27. P. 240. https://doi.org/10.31083/j.fbl2708240
  28. Pommier Y. // Nat. Rev. Cancer. 2006. V. 6. P. 789– 802. https://doi.org/10.1038/nrc1977
  29. Hartley J.A. // Expert Opin. Biol. Ther. 2021. V. 21. P. 931–943. https://doi.org/10.1080/14712598.2020.1776255
  30. Yao H.P., Zhao H., Hudson R., Tong X.M., Wang M.H. // Drug Discov. Today. 2021. V. 26. P. 1857–1874. https://doi.org/10.1016/j.drudis.2021.06.012
  31. Yin W., Rogge M. // Clin. Transl. Sci. 2019. V. 12. P. 98–112. https://doi.org/10.1111/cts.12624
  32. Ramanjulu J.M., Pesiridis G.S., Yang J., Concha N., Singhaus R., Zhang S.Y., Tran J.L., Moore P., Lehmann S., Eberl H.C., Muelbaier M., Schneck J.L., Clemens J., Adam M., Mehlmann J., Romano J., Morales A., Kang J., Leister L., Graybill T.L., Charnley A.K., Ye G., Nevins N., Behnia K., Wolf A.I., Kasparcova V., Nurse K., Wang L., Puhl A.C., Li Y., Klein M., Hopson C.B., Guss J., Bantscheff M., Bergamini G., Reilly M.A., Lian Y., Duffy K.J., Adams J., Foley K.P., Gough P.J., Marquis R.W., Smothers J., Hoos A., Bertin J. // Nature. 2018. V. 564. P. 439–443. https://doi.org/10.1038/s41586-018-0705-y
  33. Wei Y., Xiang H., Zhang W. // Front. Pharmacol. 2022. V. 13. P. 970553. https://doi.org/10.3389/fphar.2022.970553
  34. Youle R.J., Strasser A. // Cell Biol. 2008. V. 9. P. 47–59. https://doi.org/10.1038/nrm2308
  35. Almaliti J., Miller B., Pietraszkiewicz H., Glukhov E., Naman C.B., Kline T., Hanson J., Li X., Zhou S., Valeriote F.A., Gerwick W.H. // Eur. J. Med. Chem. 2019. V. 161. P. 416–432. https://doi.org/10.1016/j.ejmech.2018.10.024
  36. Simmons J.K., Burke P.J., Cochran J.H., Pittman P.G., Lyon R.P. // Toxicol. Appl. Pharmacol. 2020. V. 392. P. 114932. https://doi.org/10.1016/j.taap.2020.114932
  37. Jain N., Smith S.W., Ghone S., Tomczuk B. // Pharm. Res. 2015. V. 32. P. 3526–3540. https://doi.org/10.1007/s11095-015-1657-7
  38. Anderson N.M., Simon M.C. // Curr. Biol. 2020. V. 30. P. R921–R925. https://doi.org/10.1016/j.cub.2020.06.081
  39. Lu J., Jiang F., Lu A., Zhang G. // Int. J. Mol. Sci. 2016. V. 17. P. 561. https://doi.org/10.3390/ijms17040561
  40. Kovtun Y.V., Goldmacher V.S. // Cancer Lett. 2007. V. 255. P. 232–240. https://doi.org/10.1016/j.canlet.2007.04.010
  41. Walsh S.J., Bargh J.D., Dannheim F.M., Hanby A.R., Seki H., Counsell A.J., Ou X., Fowler E., Ashman N., Takada Y., Isidro-Llobet A., Parker J.S., Carroll J.S., Spring D.R. // Chem. Soc. Rev. 2021. V. 50. P. 1305– 1353. https://doi.org/10.1039/d0cs00310g
  42. von Witting E., Hober S., Kanje S. // Bioconjug. Chem. 2021. V. 32. P. 1515–1524. https://doi.org/10.1021/acs.bioconjchem.1c00313
  43. Wei C., Zhang G., Clark T., Barletta F., Tumey L.N., Rago B., Hansel S., Han X. // Anal. Chem. 2016. V. 88. P. 4979–4986. https://doi.org/10.1021/acs.analchem.6b00976
  44. Junutula J.R., Raab H., Clark S., Bhakta S., Leipold D.D., Weir S., Chen Y., Simpson M., Tsai S.P., Dennis M.S., Lu Y., Meng Y.G., Ng C., Yang J., Lee C.C., Duenas E., Gorrell J., Katta V., Kim A., McDorman K., Flagella K., Venook R., Ross S., Spencer S.D., Wong W.L., Lowman H.B., Vandlen R., Sliwkowski M.X., Scheller R.H., Polakis P., Mallet W. // Nat. Biotechnol. 2008. V. 26. P. 925–932. https://doi.org/10.1038/nbt.1480
  45. Axup J.Y., Bajjuri K.M., Ritland M., Hutchins B.M., Kim C.H., Kazane S.A., Halder R., Forsyth J.S., Santidrian A.F., Stafin K., Lu Y., Tran H., Seller A.J., Biroc S.L., Szydlik A., Pinkstaff J.K., Tian F., Sinha S.C., Felding-Habermann B., Smider V.V., Schultz P.G. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 16101– 16106. https://doi.org/10.1073/pnas.1211023109
  46. Rabuka D., Rush J.S., deHart G.W., Wu P., Bertozzi C.R. // Nat. Protoc. 2012. V. 7. P. 1052–1067. https://doi.org/10.1038/nprot.2012.045
  47. Zhu Z., Ramakrishnan B., Li J., Wang Y., Feng Y., Prabakaran P., Colantonio S., Dyba M.A., Qasba P.K., Dimitrov D.S. // MAbs. 2014. V. 6. P. 1190–1200. https://doi.org/10.4161/mabs.29889
  48. Schumacher F.F., Nunes J.P., Maruani A., Chudasama V., Smith M.E., Chester K.A., Baker J.R., Caddick S. // Org. Biomol. Chem. 2014. V. 12. P. 7261– 7269. https://doi.org/10.1039/c4ob01550a
  49. Metrangolo V., Engelholm L.H. // Cancers (Basel). 2024.V. 16. P. 447. https://doi.org/10.3390/cancers16020447
  50. Hughes B. // Nat. Rev. Drug Discov. 2010. V. 9. P. 665–667. https://doi.org/10.1038/nrd3270
  51. Zhang J., Woods C., He F., Han M., Treuheit M.J., Volkin D.B. // Biochemistry. 2018. V. 57. P. 5466–5479. https://doi.org/10.1021/acs.biochem.8b00575
  52. Teicher B.A., Chari R.V. // Clin. Cancer Res. 2011. V. 17. P. 6389–6397. https://doi.org/10.1158/1078-0432.CCR-11-1417
  53. Kholodenko R.V., Kalinovsky D.V., Doronin I.I., Ponomarev E.D., Kholodenko I.V. // Curr. Med. Chem. 2019. V. 26. P. 396–426. https://doi.org/10.2174/0929867324666170817152554
  54. Lou H., Cao X. // Cancer Commun. (Lond). 2022. V. 42. P. 804–827. https://doi.org/10.1002/cac2.12330
  55. Kholodenko V., Kalinovsky D.V., Svirshchevskaya E.V., Doronin I.I., Konovalova M.V., Kibardin A.V., Shamanskaya T.V., Larin S.S., Deyev S.M., Kholodenko R.V. // Molecules. 2019. V. 24. P. 3835. https://doi.org/10.3390/molecules24213835
  56. Hussack G., Ryan S., van Faassen H., Rossotti M., MacKenzie C.R., Tanha J. // PLoS One. 2018. V. 13. P.e0208978. https://doi.org/10.1371/journal.pone.0208978
  57. Muyldermans S. // Annu. Rev. Biochem. 2013. V. 82. P. 775–797. https://doi.org/10.1146/annurev-biochem-063011-092449
  58. Thakur A., Huang M., Lum L.G. // Blood Rev. 2018. V. 32. P. 339–347. https://doi.org/10.1016/j.blre.2018.02.004
  59. Newman M.J., Benani D.J. // J. Oncol. Pharm. Pract. 2016. V. 22. P. 639–645. https://doi.org/10.1177/1078155215618770
  60. Zeng H., Ning W., Liu X., Luo W., Xia N. // Front. Med. 2024. V. 18. P. 597–621. https://doi.org/10.1007/s11684-024-1072-8
  61. Strohl W.R. // Protein Cell. 2018. V. 9. P. 86–120. https://doi.org/10.1007/s13238-017-0457-8
  62. Esapa B., Jiang J., Cheung A., Chenoweth A., Thurston D.E., Karagiannis S.N. // Cancers (Basel). 2023. V. 15. P. 1845. https://doi.org/10.3390/cancers15061845
  63. Ingle G.S., Chan P., Elliott J.M., Chang W.S., Koeppen H., Stephan J.P., Scales S.J. // Br. J. Haematol. 2008. V. 140. P. 46–58. https://doi.org/10.1111/j.1365-2141.2007.06883.x
  64. Short N.J., Kantarjian H. // Lancet Haematol. 2023. V. 10. P. e382–e388. https://doi.org/10.1016/S2352-3026(23)00064-9
  65. Xing L., Liu Y., Liu J. // Cancers (Basel). 2023. V. 15. P. 2240. https://doi.org/10.3390/cancers15082240
  66. Burke J.M., Morschhauser F., Andorsky D., Lee C., Sharman J.P. // Expert. Rev. Clin. Pharmacol. 2020. V. 13. P. 1073–1083. https://doi.org/10.1080/17512433.2020.1826303
  67. Criscitiello C., Morganti S., Curigliano G. // J. Hematol. Oncol. 2021. V. 14. P. 20. https://doi.org/10.1186/s13045-021-01035-z
  68. de Azambuja E., Bedard P.L., Suter T., PiccartGebhart M. // Target Oncol. 2009. V. 4. P. 77–88. https://doi.org/10.1007/s11523-009-0112-2
  69. Shvartsur A., Bonavida B. // Genes Cancer. 2015. V. 6. P. 84–105. https://doi.org/10.18632/genesandcancer.40
  70. Ordu M., Karaaslan M., Sirin M.E., Yilmaz M. // North Clin. Istanb. 2023. V. 10. P. 583–588. https://doi.org/10.14744/nci.2023.36034
  71. Gonzalez T., Muminovic M., Nano O., Vulfovich M. // Int. J. Mol. Sci. 2024. V. 25. P. 1046. https://doi.org/10.3390/ijms25021046
  72. Ahmadi S.E., Shabannezhad A., Kahrizi A., Akbar A., Safdari S.M., Hoseinnezhad T., Zahedi M., Sadeghi S., Mojarrad M.G., Safa M. // Biomark Res. 2023. V. 11. P. 60. https://doi.org/10.1186/s40364-023-00504-6
  73. Rui R., Zhou L., He S. // Front. Immunol. 2023. V. 14. P. 1212476. https://doi.org/10.3389/fimmu.2023.1212476
  74. Anderson AC, Joller N, Kuchroo VK. // Immunity. 2016. V. 44 P.989-1004. https://doi.org/10.1016/j.immuni.2016.05.001
  75. Negative A., Year S.S., Jeter A., Saragovi H.U. // Front. Oncol. 2023. V. 13. P. 1261090. https://doi.org/10.3389/fonc.2023.1261090
  76. Philippova J., Shevchenko J., Sennikov S. // Front. Immunol. 2024. V. 15. P. 1371345. https://doi.org/10.3389/fimmu.2024.1371345
  77. Nazha B., Inal C., Owonikoko T.K. // Front. Oncol. 2020. V. 10. P. 1000. https://doi.org/10.3389/fonc.2020.01000
  78. Machy P., Mortier E., Birklé S. // Front. Pharmacol. 2023. V. 14. P. 1249929. https://doi.org/10.3389/fphar.2023.1249929
  79. Ivanov N.S., Kachanov D.Y., Larin S.S., Mollaev M.D., Konovalov D.M., Shamanskaya T.V. // Russ. J. Pediatr. Hematol. Oncol. 2021. V. 8. P. 47–59.
  80. Orsi G., Barbolini M., Ficarra G., Tazzioli G., Manni P., Petrachi T., Mastrolia I., Orvieto E., Spano C., Prapa M., Kaleci S., D’Amico R., Guarneri V., Dieci M.V., Cascinu S., Conte P., Piacentini F., Dominici M. // Oncotarget. 2017. V. 8. P. 31592–31600. https://doi.org/10.18632/oncotarget.16363
  81. Ahmed M., Cheung N.K. // FEBS Lett. 2014. V. 588. P. 288–297. https://doi.org/10.1016/j.febslet.2013.11.030
  82. Kholodenko I.V., Kalinovsky D.V., Doronin I.I., Deyev S.M., Kholodenko R.V. // J. Immunol. Res. 2018. V. 2018. P. 7394268. https://doi.org/10.1155/2018/7394268
  83. Ploessl C., Pan A., Maples K.T., Lowe D.K. // Ann. Pharmacother. 2016. V. 50. P. 416–422. https://doi.org/10.1177/1060028016632013
  84. Kalinovsky D.V., Kibardin A.V., Kholodenko I.V., Svirshchevskaya E.V., Doronin I.I., Konovalova M.V., Grechikhina M.V., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // J. Immunother. Cancer. 2022. V. 10. P. e004646. https://doi.org/10.1136/jitc-2022-004646
  85. Kalinovsky D.V., Kholodenko I.V., Kibardin A.V., Doronin I.I., Svirshchevskaya E.V., Ryazantsev D.Y., Konovalova M.V., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // Int. J. Mol. Sci. 2023. V. 24. P. 1239. https://doi.org/10.3390/ijms24021239
  86. Kalinovsky D.V., Kholodenko I.V., Svirshchevskaya E.V., Kibardin A.V., Ryazantsev D.Y., Rozov F.N., Larin S.S., Deyev S.M., Kholodenko R.V. // Curr. Issues Mol. Biol. 2023. V. 45. P. 8112–8125. https://doi.org/10.3390/cimb45100512
  87. Liu K., Li M., Li Y., Li Y., Chen Z., Tang Y., Yang M., Deng G., Liu H. // Mol. Cancer. 2024. V. 23. P. 62. https://doi.org/10.1186/s12943-024-01963-7
  88. Ma X., Wang M., Ying T., Wu Y. // Antib. Ther. 2024. V. 7. P. 114–122. https://doi.org/10.1093/abt/tbae005
  89. Su Z., Xiao D., Xie F., Liu L., Wang Y., Fan S., Zhou X., Li S. // Acta Pharm. Sin. B. 2021. V. 11. P. 3889–3907. https://doi.org/10.1016/j.apsb.2021.03.042

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. Schematic structure of an ADC consisting of a monoclonal antibody, a linker, and a cytotoxic drug. The drawing was created using the Bio Reader program (https://www.biorender.com /).

Download (317KB)
3. Fig. 2. The mechanism of action of ADC. Internalization of the ADC–receptor complex and formation of the early endosome (1). Cleavage of ADC by acid hydrolases as a result of fusion of the late endosome with the lysosome (2). Release of the drug (3). Cytotoxic effect of the drug on cellular structures (in this case, DNA or microtubules) (4). In some cases, the effectiveness of therapy using ADC decreases due to the binding of the antibody to the neonatal Fc receptor (FcRn) in the endosome; in this case, ADC is recycled into the extracellular space (2*). The drawing was created using the BioRender program (https://www.biorender.com /).

Download (554KB)
4. Fig. 3. The main methods of conjugation of mAt and drug in the composition of ADC and their corresponding average DAR values. The drawing is modified based on [49].

Download (464KB)
5. 4. Schematic structure of IgG subclasses, as well as various antibody formats used in the composition of ADC, for targeted drug delivery. The drawing was created using the Bio Reader program (https://www.biorender.com /).

Download (278KB)
6. Fig. 5. GD2 ganglioside structure. The drawing is modified based on [78].

Download (235KB)

Copyright (c) 2025 Russian Academy of Sciences