Cell Number Dynamics, Chlorophyll а Fluorescence Intensity, and Photosynthetic Pigment Content in Thalassiosira nordenskioeldii Cleve 1873 (Bacillariophyta) Exposed to Environmental Copper Pollution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of copper at concentrations of 10, 20, and 50 µg/L on population growth, chlorophyll a fluorescence, and content of photosynthetic pigments (chlorophyll a and carotenoids) of the diatom Thalassiosira nordenskioeldii was studied. It was shown that at metal concentrations of 10 and 20 µg/L, the cell number started to increase from the first days of the experiment and, by the end of the experiment, exceeded that in the control group 5.8- and 5.6-fold, respectively. The intensity of chlorophyll a fluorescence and the content of photosynthetic pigments under these conditions were higher than in control throughout the experiment. At a metal concentration of 50 µg/L, the growth of the cell population was inhibited at the beginning of the experiment; by the end of the experiment, the cell number exceeded that in control. The same pattern was recorded for the other parameter, too. Based on the obtained data, it is hypothesized that copper at the studied concentrations may contribute to the proliferation of T. nordenskioeldii in the natural environment.3

Full Text

Restricted Access

About the authors

Zh. V. Markina

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Author for correspondence.
Email: zhannav@mail.ru
ORCID iD: 0000-0001-7135-1375
Russian Federation, Vladivostok, 690041

A. V. Podoba

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: zhannav@mail.ru
ORCID iD: 0009-0007-4783-3471
Russian Federation, Vladivostok, 690041

T. Yu. Orlova

Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: zhannav@mail.ru
ORCID iD: 0000-0002-5246-6967
Russian Federation, Vladivostok, 690041

References

  1. Акимов А.И., Соломонова Е.С., Шоман Н.Ю., Рылькова О.А. Сравнительная оценка влияния наночастиц оксида меди и сульфата меди на структурно-функциональные характеристики Thalassiosira weissflogii в условиях накопительного культивирования // Физиол. раст. 2023. T. 70. № 5. С. 494–505.
  2. Ильяш Л.В., Радченко И.Г., Шевченко В.П. и др. Контрастные сообщества летнего фитопланктона в стратифицированных и перемешанных водах Белого моря // Океанология. 2014. Т. 54. № 6. С. 781–781.
  3. Коршенко А.Н. Качество морских вод по гидрохимическим показателям. Ежегодник 2020. М.: Наука, 2021. 281 с.
  4. Маркина Ж.В. Ультраструктура и автотрофная функция клеток рафидофитовой микроводоросли Heterosigma akashiwo (Y. Hada) Y. Hada ex Y. Hara and M. Chihara, 1987 в загрязненной медью среде // Биол. моря. 2021. Т. 47. № 3. С. 196–201.
  5. Стоник И.В. Качественный и количественный состав фитопланктона бухты Золотой Рог Японского моря // Изв. ТИНРО. 2018. Т. 194. С. 167–174.
  6. Шевченко О.Г., Шульгина М.А., Шулькин В.М., Тевс К.О. Многолетняя динамика и морфология диатомовой водоросли Thalassiosira nordenskioeldii Cleve, 1873 (Bacillariophyta) в прибрежных водах залива Петра Великого Японского моря // Биол. моря. 2020. Т. 46. № 4. С. 277–284.
  7. Cavalletti E., Romano G., Palma Esposito F. et al. Copper effect on microalgae: toxicity and bioremediation strategies // Toxics. 2022. V. 10. № 9. P. 527.
  8. https://doi.org/10.3390/toxics10090527
  9. Guillard R.R.L., Ryther J.H. Studies of marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. // Can. J. Microbiol. 1962. V. 8. № 2. P. 229–239.
  10. Harris A.S.D., Medlin L.K., Lewis J. et al. Thalassiosira species (Bacillariophyceae) from a Scottish sea-loch // Eur. J. Phycol. 1995. V. 30. № 2. P. 117–131.
  11. Jeffrey S.T., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochemie und Physiologie der Pflanzen. 1975. V. 167. № 2. Р. 191–194.
  12. Liu K., Liu S., Chen Y. et al. Complete mitochondrial genome of the harmful algal bloom species Thalassiosira nordenskioeldii (Mediophyceae, Bacillariophyta) from the East China Sea // Mitochondrial DNA. Part B. 2021. V. 6. № 4. P. 1421–1423.
  13. Muylaert K., Sabbe K. The diatom genus Thalassiosira (Bacillariophyta) in the estuaries of the Schelde (Belgium/The Netherlands) and the Elbe (Germany) // Bot. Mar. 1996. V. 39. № 1-6. P. 103–116.
  14. Maltsev Y., Maltseva S., Kulikovskiy M. Toxic effect of copper on soil microalgae: experimental data and critical review // Int. J. Environ. Sci. Technol. 2023. V. 20. P. 10903–10920.
  15. Miazek K., Iwanek W., Remacle C. et al. Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial products biosynthesis: a review // Int. J. Mol. Sci. 2015. V. 16. № 10. P. 23929–23969.
  16. Wang X., Cao W., Du H. et al. Increasing temperature alters the effects of extracellular copper on Thalassiosira pseudonana physiology and transcription // J. Mar. Sci. Eng. 2021. V. 9. № 8. art. ID 816.
  17. https://doi.org/10.3390/jmse9080816
  18. Wang M.J., Wang W.X. Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcellular distribution and thiol synthesis // Environ. Sci. Technol. 2008. V. 42. № 22. P. 8603–8608.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of different copper concentrations on the number of cells of the microalga Thalassiosira nordenskioeldii (a) and chlorophyll a fluorescence in them (b).

Download (276KB)
3. Fig. 2. Changes in the content of photosynthetic pigments chlorophyll a (a) and carotenoids (b) in the cells of Thalassiosira nordenskioeldii under the influence of copper.

Download (255KB)

Copyright (c) 2024 The Russian Academy of Sciences