Ignition of a gasless mixture array by a combustion wave

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The methods of mathematical modeling have been used to explore the initiation of combustion of a large mass of a condensed mixture in local contact with the end face of the burning layer. It is shown that the minimum width of the igniting layer is proportional to the width of the thermal front of the combustion wave. The coefficient of proportionality is determined by the initial temperature, heat and activation energy of the reaction. The calculation results can be used to estimate the effective activation energy of the reaction that controls the combustion mechanism of gasless system.

全文:

受限制的访问

作者简介

A. Aldushin

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: petr@ism.ac.ru
俄罗斯联邦, Chenogolovka

P. Krishenik

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: petr@ism.ac.ru
俄罗斯联邦, Chenogolovka

S. Rogachev

Merzhanov Institute of Structural Macrokinetics and Material Science, Russian Academy of Sciences

Email: petr@ism.ac.ru
俄罗斯联邦, Chenogolovka

参考

  1. Merzhanov A.G. // Combust. and Flame. 1966. V. 10. № 4. P. 341. https://doi.org/10.1016/0010-2180(66)90041-1
  2. Melguizo-Gavilanes J., Boettcher P.A. Mével R., Shepherd J.E. // Combust. and Flame. 2019. V. 204. P. 116. https://doi.org/10.1016/j.combustflame.2018.12.036
  3. Krishenik P.M., Kostin S.V., Rogachev S.A. // Combust. Explos., Shock Waves. 2021. V. 57(2). P. 182. https://doi.org/1134/S0010508221020064
  4. Krishenik P.M. Kostin S.V., Rogachev S.A. // Intern. J. Self-Propag. High-Temp. Syns. 2020. V. 29. № 4. P. 191. https://doi.org/10.3103/S1061386220040056
  5. Krishenik P.M., Kostin S.V., Rogachev S.A. // Russ. J. Phys. Chem. B. 2021. V. 15(1). P. 68. https://doi.org/10.1134/S1990793121010073
  6. Aldushin A.P., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 1995. V. 4. № 1. P. 5.
  7. Merzhanov A.G. // Combust. Sci. and Tech. 1994. V. 98. P. 307. https://doi.org/10.1016/0010-2180(66)90041-1
  8. Krishenik P.M., Kostin S.V., Rogachev A.S. // Russ. J. Phys. Chem. B. 2023. V. 17(5). P. 1123. https://doi.org/10.1134/S1990793123050044
  9. Aldushin A.P., Bayliss A., Matkowsky B.J. // Intern. J. Self-Propag. High-Temp. Syns. 2002. V. 11. № 1. P. 131.
  10. Samarskii A.A. The Theory of Difference Shemes. NY: CRC Press, 2001. https://doi.org/10.1201/9780203908518
  11. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 394. https://doi.org/10.1134/S1990793123020100
  12. Marshakov V.N., Krupkin V.G. // Russ. J. Phys. Chem. B. 2023. V. 17(3). P. 399. https://doi.org/10.1134/S1990793123020112

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Combustion diagram: rectangular area 2 is initiated by ignition area 1.

下载 (73KB)
3. Fig. 2. Trajectory of combustion wave propagation at supercritical (d1A = 24.1) and subcritical (d1A = 24.0) width of the ignition layer at Ar = 6, T0r = 0.1, Ze = Ar(1 - T0r).

下载 (83KB)
4. Fig. 3. Dependence of the critical width of the ignition layer by the combustion wave D1crU/ϰ on the Arrhenius number Ar (curves 1 and 2). The length of the ignition layer L1U/ϰ ~ 100, T0r = 0.1, Ze = Ar(1 – T0r). Curve 3 is the critical value of D1crU/ϰ for ignition by an inert layer with the adiabatic combustion temperature as the initial value.

下载 (93KB)
5. Fig. 4. Temperature fields formed in the transient process. Physicochemical parameters of the layers: Ar = 8.0, T0r = 0.1, Ze = Ar(1 – T0r), width of the ignition layer D1CrU/ϰ = 13.64, a, b – temperature fields at L1U/ϰ = 20.8; c, d – L1U/ϰ = 19.3.

下载 (118KB)

版权所有 © Russian Academy of Sciences, 2024