SRGz: Machine Learning Methods and Properties of the Catalog of SRG/eROSITA Point X-ray Source Optical Counterparts in the DESI Legacy Imaging Surveys Footprint

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We describe the methods of the SRGz system for the physical identification of eROSITA point X-ray sources from photometric data in the DESI Legacy Imaging Surveys footprint. We consider the models included in the SRGz system (version 2.1) that have allowed us to obtain accurate measurements of the cosmological redshift and class of an X-ray object (quasar/galaxy/star) from multiwavelength photometric sky surveys (DESI LIS, SDSS, Pan-STARRS, WISE, eROSITA) for 87 %  of the entire eastern extragalactic region (0 < l < 180◦, |b| > 20◦). An important feature of the SRGz system is that its data handling model (identification, classification, photo-z algorithms) is based entirely on heuristic machine learning approaches. For a standard choice of SRGz parameters the optical counterpart identification completeness (recall) in the DESI LIS footprint is 95% (with an optical counterpart selection precision of 94%); the classification completeness (recall) of X-ray sources without optical counterparts in DESI LIS is 82% (85% precision). A high quality of the photometric classification of X-ray source optical counterparts is achieved in SRGz: >99% photometric classification completeness (recall) for extragalactic objects (a quasar or a galaxy) and stars on a test sample of sources with SDSS spectra and GAIA astrometric stars. We present an analysis of the importance of various photometric features for the optical identification and classification of eROSITA X-ray sources. We have shown that the infrared (IR) magnitude W2, the X-ray/optical(IR) ratios, the optical colors (for example, (g − r)), and the IR color (W1-W2) as well as the color distances introduced by us play a significant role in separating the classes of X-ray objects. We use the most important photometric features to interpret the SRGz predictions in this paper. The accuracy of the SRGz photometric redshifts (from DESI LIS, SDSS, Pan-STARRS, and WISE photometric data) has been tested in the Stripe82X field on a sample of 3/4 of the optical counterparts of eROSITA point X-ray sources (for which spectroscopic measurements are available in Stripe82X): σNMAD = 3.1% (the normalized median absolute deviation of the prediction) and n>0.15 = 7.8%  (the fraction of catastrophic outliers). The presented photo-z results for eROSITA X-ray sources in the Stripe82X field are more than a factor of 2 better in both metrics ( σNMAD and n>0.15) than the photo-z results of other groups published in the Stripe82X catalog.

About the authors

A. V Mescheryakov

Lomonosov Moscow State University; Space Research Institute, Russian Academy of Sciences

Author for correspondence.
Email: mesch@cosmos.ru

канд. физ.-мат. наук

119991, Moscow, Russia; 117997, Moscow, Russia

I. V. Mashechkin

Lomonosov Moscow State University

Email: mesch@cosmos.ru
119991, Moscow, Russia

S. V. Gerasimov

Lomonosov Moscow State University

Email: mesch@cosmos.ru
119991, Moscow, Russia

I. M. Khamitov

Kazan Federal University

Email: mesch@cosmos.ru
420000, Kazan, Russia

I. F. Bikmaev

Kazan Federal University

Email: mesch@cosmos.ru
420000, Kazan, Russia

R. Krivonos

Space Research Institute, Russian Academy of Sciences

Email: mesch@cosmos.ru
117997, Moscow, Russia

R. A. Burenin

Space Research Institute, Russian Academy of Sciences

Email: mesch@cosmos.ru
117997, Moscow, Russia

S Yu. Sazonov

Space Research Institute, Russian Academy of Sciences

Email: mesch@cosmos.ru
117997, Moscow, Russia

M. I. Belvedersky

Space Research Institute, Russian Academy of Sciences

Email: mesch@cosmos.ru
117997, Moscow, Russia

M. R. Gilfanov

Space Research Institute, Russian Academy of Sciences; Max Planck Institut fu¨ r Astrophysik

Email: uskov@cosmos.ru
Moscow, 117997 Russia; Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching, Germany

P. A. Medvedev

Space Research Institute, Russian Academy of Sciences

Email: mesch@cosmos.ru
117997, Moscow, Russia

G. A. Khorunzhev

Space Research Institute, Russian Academy of Sciences

Email: zaznobin@cosmos.ru
Moscow, 117997 Russia

V. D. Borisov

Lomonosov Moscow State University; Space Research Institute, Russian Academy of Sciences

Email: mesch@cosmos.ru
119991, Moscow, Russia; 117997, Moscow, Russia

R. A. Sunyaev

Space Research Institute, Russian Academy of Sciences; Max Planck Institut fu¨ r Astrophysik

Email: uskov@cosmos.ru
Moscow, 117997 Russia; Karl-Schwarzschild-Str. 1, Postfach 1317, D-85741 Garching, Germany

References

  1. Абдурроуф и др. (Abdurro’uf, K. Accetta, C. Aerts, V. Silva Aguirre, R. Ahumada, N. Ajgaonkar, et al.), Astrophys. J. Suppl. Ser. 259, 35 (2022).
  2. Аболфати и др. (B. Abolfathi, D.S. Aguado, G. Aguilar, C. Allende Prieto, A. Almeida, T.T. Ananna, et al.), Astrophys. J. Suppl. Ser. 235, 42 (2018).
  3. Ананна и др. (T.T. Ananna, M. Salvato, S. LaMassa, C.M. Urry, N. Cappelluti, C. Cardamone, et al.), Astrophys. J. 850, 66 (2017).
  4. Арик, Пфистер (S.O. Arik and T. Pfister), arXiv e-prints, p. arXiv:1908.07442 (2019).
  5. Баштанник, Гайндман (D. Bashtannyk and R. Hyndman), Comput. Statist. and Data Analys. 36, 279 (2001).
  6. Бельведерский и др. (M.I. Belvedersky, A.V. Meshcheryakov, P.S. Medvedev, and M.R. Gilfanov), Astron. Lett. 48, 109 (2022).
  7. Бикмаев и др. (I.F. Bikmaev, E.N. Irtuganov, E.A. Nikolaeva, N.A. Sakhibullin, R.I. Gumerov, A.S. Sklyanov, et al.), Astron. Lett. 46, 645 (2020).
  8. Бикмаев и др. (I.F. Bikmaev, E.N. Irtuganov, E.A. Nikolaeva, N.A. Sakhibullin, R.I. Gumerov, A.S. Sklyanov, et al.), Astron. Lett. 47, 277 (2021).
  9. Бишоп (C.M. Bishop), Pattern Recognition and Machine Learning (Information Science and Statistics), Springer, 1st Ed. (2007).
  10. Болтон и др. (A.S. Bolton, D.J. Schlegel, É. Aubourg, S. Bailey, V. Bhardwaj, J.R. Brownstein, et al.), Astron. J. 144, 144 (2012).
  11. Борисов и др. (V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk, and G. Kasneci), arXiv e- prints, p. arXiv:2110.01889 (2021).
  12. Борисов и др. (V. Borisov, A. Meshcheryakov, and S. Gerasimov), Astron. Soc. Pacific Conf. Ser. V. 532 of Astron. Soc. Pacific Conf. Ser., p. 231 (2022).
  13. Брейман (L. Breiman), Machine Learn. 45, 5 (2001).
  14. Брешиа и др. (M. Brescia, S. Cavuoti, and G. Longo), MNRAS 450, 3893 (2015).
  15. Брешиа и др. (M. Brescia, M. Salvato, S. Cavuoti, T.T. Ananna, G. Riccio, S.M. LaMassa, et al.), MNRAS 489, 663 (2019).
  16. Буренин (R.A. Burenin), Astron. Lett. 48, 153 (2022).
  17. Быков и др. (S.D. Bykov, M.I. Belvedersky, and M.R. Gilfanov), arXiv e-prints, p. arXiv:2302.13689 (2023).
  18. Вебб и др. (N.A. Webb, M. Coriat, I. Traulsen, J. Ballet, C. Motch, F.J. Carrera, et al.), Astron. Astrophys. 641, A136 (2020).
  19. Гильфанов М.Р. и др., Письма в Астрон. журн., в печати (2023).
  20. Гуо и др. (C. Guo, G. Pleiss, Y. Sun, and K.Q. Weinberger), arXiv e-prints, p. arXiv:1706.04599 (2017).
  21. Дей и др. (A. Dey, D.J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, et al.), Astron. J. 157, 168 (2019).
  22. Додин и др. (A.V. Dodin, S.A. Potanin, N.I. Shatsky, A.A. Belinski, K.E. Atapin, M.A. Burlak, et al.), Astron. Lett. 46, 429 (2020).
  23. Додин и др. (A.V. Dodin, N.I. Shatsky, A.A. Belinski, K.E. Atapin, M.A. Burlak, S.G. Zheltoukhov, et al.), Astron. Lett. 47, 661 (2021).
  24. Дрю и др. (J.E. Drew, E. Gonzalez-Solares, R. Greimel, M.J. Irwin, A. Küpcü Yoldas, J. Lewis, et al.), MNRAS 440, 2036 (2014).
  25. Избицки, Ли (R. Izbicki and A.B. Lee), arXiv e-prints, p. arXiv:1704.08095 (2017).
  26. Йорк и др. (D.G. York, J. Adelman, J. Anderson, S.F. Anderson, J. Annis, N.A. Bahcall, et al.), Astron. J. 120, 1579 (2000).
  27. Кавуоти и др. (S. Cavuoti, V. Amaro, M. Brescia, C. Vellucci, C. Tortora, and G. Longo), MNRAS 465, 1959 (2017).
  28. Карраско Кинд, Бруннер (M. Carrasco Rind and R.J. Brunner), MNRAS 432, 1483 (2013).
  29. Ке и др. (G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al.), in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, p. 3149–3157, Curran Associates Inc., Red Hook, NY, USA (2017).
  30. Коллаборация GAIA и др. (Gaia Collaboration, G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, et al.), Astron. Astrophys. 616, A1 (2018).
  31. Ла Масса и др. (S.M. LaMassa, C.M. Urry, N. Cappelluti, H. Böhringer, A. Comastri, E. Glikman, et al.), Astrophys. J. 817, 172 (2016).
  32. Ли и др. (C. Li, Y. Zhang, C. Cui, D. Fan, Y. Zhao, X.-B. Wu, et al.), MNRAS 518, 513 (2023).
  33. Лин, Джеон (Y. Lin and Y. Jeon), J. Am. Statistic. Associat. 101, 578 (2006).
  34. Ломотей, Дитерс (R. Lomotey and R. Deters), Proc. – IEEE 8th Inter. Symposium on Service Oriented System Engineering, SOSE 2014, pp. 181–191, IEEE Computer Society, United States, 8th IEEE Inter. Symp. on Service Oriented System Engineering, SOSE 2014; Conference date: 07-04-2014 Through 11-04-2014 (2014).
  35. Лундберг, Ли (S.M. Lundberg and S.-I. Lee), in I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30, pp. 4765–4774, Curran Associates, Inc. (2017).
  36. Люк и др. (B.W. Lyke, A.N. Higley, J.N. McLane, D.P. Schurhammer, A.D. Myers, A. J. Ross, et al.), Astrophys. J. Suppl. Ser. 250, 8 (2020).
  37. Майнсхаузен (N. Meinshausen), J. Mach. Learn. Res. 7, 983 (2006).
  38. Маккаро и др. (T. Maccacaro, I.M. Gioia, A. Wolter, G. Zamorani, and J.T. Stocke), Astrophys. J. 326, 680 (1988).
  39. Медведев П.С. и др., Письма в Астрон. журн., в печати (2022).
  40. Мейнзер и др. (A. Mainzer, J. Bauer, T. Grav, J. Masiero, R. M. Cutri, J. Dailey, et al.), Astrophys. J. 731, 53 (2011).
  41. Мензель и др. (M.L. Menzel, A. Merloni, A. Georgakakis, M. Salvato, E. Aubourg, W.N. Brandt, et al.), MNRAS 457, 110 (2016).
  42. Мещеряков и др. (A.V. Meshcheryakov, V.V. Glazkova, S.V. Gerasimov, and I.V. Mashechkin), Astron. Lett. 44, 735 (2018).
  43. Ньюман, Груен (J. Newman), Ann. Rev. Astron. and Astrophys. 60, 363 (2022).
  44. Павлинский и др. (M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al.), Astron. Astrophys. 650, A42 (2021).
  45. Парис и др. (I. Pâris, P. Petitjean, É. Aubourg, A.D. Myers, A. Streblyanska, B.W. Lyke, et al.), Astron. Astrophys. 613, A51 (2018).
  46. Педрегоса и др. (F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al.), J. Mach. Learn. Res. 12, 2825 (2011).
  47. Предель и др. (P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al.), Astron. Astrophys. 647, A1 (2021).
  48. Райт и др. (E.L. Wright, P.R.M. Eisenhardt, A.K. Mainzer, M.E. Ressler, R.M. Cutri, T. Jarrett, et al.), Astron. J. 140, 1868 (2010).
  49. Росс, Кросс (N.P. Ross and N.J.G. Cross), MNRAS 494, 789 (2020).
  50. Руиз и др. (A. Ruiz, A. Corral, G. Mountrichas, and I. Georgantopoulos), Astron. Astrophys. 618, A52 (2018).
  51. Садех и др. (I. Sadeh, F.B. Abdalla, and O. Lahav), PASP 128, 104502 (2016).
  52. Сальвато и др. (M. Salvato, J. Buchner, T. Budavári, T. Dwelly, A. Merloni, M. Brusa, et al.), MNRAS 473, 4937 (2018).
  53. Сальвато и др. (M. Salvato, J. Wolf, T. Dwelly, A. Georgakakis, M. Brusa, A. Merloni, et al.), Astron. Astrophys., 661, A3 (2022).
  54. Сампалли и др. (G. Somepalli, M. Goldblum, A. Schwarzschild, C. Bayan Bruss, and T. Goldstein), arXiv e-prints, p. arXiv:2106.01342 (2021).
  55. Стоутон и др. (C. Stoughton, R.H. Lupton, M. Bernardi, M.R. Blanton, S. Burles, F.J. Castander, et al.), Astron. J. 123, 485 (2002).
  56. Сюняев и др. (R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al.), Astron. Astrophys. 656, A132 (2021).
  57. Танг и др. (C. Tang, D. Garreau, and U. von Luxburg), in S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, Vol. 31, Curran Associates, Inc. (2018).
  58. Тэаро, Мещеряков, in preprint (2023).
  59. Фосетт (T. Fawcett), Pattern Recognition Letters, 27, 861, ROC Analysis in Pattern Recognition (2006).
  60. Фридман (J.H. Friedman), Annals of statistics, p. 1189–1232 (2001).
  61. Ханлей, МакНейл (J.A. Hanley and B.J. McNeil), Radiology 143, 29 (1982).
  62. Хорунжев и др. (G.A. Khorunzhev, A.V. Meshcheryakov, R.A. Burenin, A.R. Lyapin, P.S. Medvedev, S.Y. Sazonov, et al.), Astron. Lett. 46, 149 (2020).
  63. Хорунжев и др. (G.A. Khorunzhev, A.V. Meshcheryakov, P.S. Medvedev, V.D. Borisov, R.A. Burenin, R.A. Krivonos, et al.), Astron. Lett. 47, 123 (2021).
  64. Хорунжев и др. (G.A. Khorunzhev, S.N. Dodonov, A.V. Meshcheryakov, A.V. Moiseev, A. Grokhovskaya, S.S. Kotov, et al.), Astron. Lett. 48, 69 (2022).
  65. Чамберс и др. (K.C. Chambers, E.A. Magnier, N. Metcalfe, H.A. Flewelling, M.E. Huber, C.Z. Waters, et al.), arXiv e-prints, p. arXiv:1612.05560 (2016).
  66. Шмидт и др. (S.J. Schmidt, A.I. Malz, J.Y.H. Soo, I.A. Almosallam, M. Brescia, S. Cavuoti, et al.), MNRAS 499, 1587 (2020).
  67. Эванс и др. (I.N. Evans, F.A. Primini, K.J. Glotfelty, C.S. Anderson, N.R. Bonaventura, J.C. Chen, et al.), Astrophys. J. Suppl. Ser. 189, 37 (2010).
  68. Эванс и др. (P.A. Evans, K.L. Page, J.P. Osborne, A.P. Beardmore, R. Willingale, D.N. Burrows, et al.), Astrophys. J. Suppl. Ser. 247, 54 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pleiades Publishing, Ltd.