Ground Tests of Rectangular Nozzle with Noise Reduction Devices on Aircraft

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The importance of jet noise for prospective supersonic transport (SST) in takeoff and climb modes dictates the need to develop methods for reducing jet noise and their subsequent validation in large- and full-scale tests. This paper presents the results of Russia’s first ground acoustic tests of a rectangular nozzle with a noise suppression system, installed on a subsonic aircraft engine to demonstrate the technology. The authors studied a rectangular beveled nozzle with an ejector and screens—elements of the SST airframe. The test results were compared for three nozzle geometries: a round nozzle corresponding to measurements for the original engine without modifications, a rectangular nozzle without screens, and a rectangular nozzle with screens. It was found that when the rectangular nozzle without screens is used, there two opposite effects occur: noise amplification compared to the round nozzle for angles of observation close to the jet axis, and noise attenuation at angles of observation close to the fan rotation plane. Installing screens increases noise up to 5 dB in the low-frequency region below 150 Hz and reduces noise by 2 dB for frequencies higher than 250 Hz. Estimation of community noise in the EPNL metric showed that this rectangular nozzle with the noise suppression system has the effect of reducing community noise in comparison with the baseline round nozzle.

About the authors

I. V. Belyaev

Central Aerohydrodynamic Institute, Moscow, Russia

Email: ivan.belyaev@tsagi.ru
Россия, Москва

S. Yu. Makashov

Central Aerohydrodynamic Institute, Moscow, Russia

Email: ivan.belyaev@tsagi.ru
Россия, Москва

M. Yu. Zaytsev

Central Aerohydrodynamic Institute, Moscow, Russia

Email: ivan.belyaev@tsagi.ru
Россия, Москва

V. G. Yudin

Central Aerohydrodynamic Institute, Moscow, Russia

Email: ivan.belyaev@tsagi.ru
Россия, Москва

A. V. Potapov

Central Aerohydrodynamic Institute, Moscow, Russia

Author for correspondence.
Email: ivan.belyaev@tsagi.ru
Россия, Москва

References

  1. Matthes S., Lee D.S., De Leon R.R., Lim L., Owen B., Skowron A., Thor R.N., Terrenoire E. Review: The Effects of Supersonic Aviation on Ozone and Climate // Aerospace. 2022. V. 9(1). P. 41.
  2. Руденко О.В., Маков Ю.Н. Звуковой удар: от физики нелинейных волн до акустической экологии (обзор) // Акуст. журн. 2021. Т. 67. № 1. С. 3–30.
  3. Knobloch K., Manoha E., Atinault O., Barrier R., Polacsek C., Lorteau M., Enghardt L. Future Aircraft and the Future of Aircraft Noise // Aviation Noise Impact Management. 2022. P. 117–139. Springer, Cham.
  4. Connecting the World through Environmentally Responsible Supersonic Flight // ICAO Environmental Report 2022. 2022. P. 63–66.
  5. Papamoschou D., Debiasi M. Conceptual development of quiet turbofan engines for supersonic aircraft // J. Propuls. Power. 2003. V. 19. P. 161–169.
  6. Kopiev V.F., Belyaev I.V., Dunaevsky A.I., Poukhov A.A., Trofimovsky I.L. On the Fundamental Possibility of a Supersonic Civil Aircraft to Comply with ICAO Noise Requirements Using Existing Technologies // Aerospace. 2022. V. 9. P. 187.
  7. Кузнецов В.М. Эффективность методов снижения шума реактивных струй двигателей пассажирских самолетов // Акуст. журн. 2010. Т. 56. С. 91–102.
  8. Беляев И.В., Горбовской В.С., Кажан А.В., Фараносов Г.А. Снижение шума высокоскоростной струи двигателя сверхзвукового гражданского самолета по результатам акустических испытаний модели плоского сопла в заглушенной камере АК-2 ЦАГИ // Докл. Рос. Академии наук. Физика, техн. науки. 2022. Т. 506(1). С. 47–56.
  9. Salehian S., Mankbadi R.R. Jet Noise in Airframe Integration and Shielding // Appl. Sci. 2020. V. 10. P. 511.
  10. Денисов С.Л., Копьев В.Ф., Остриков Н.Н., Фараносов Г.А., Чернышев С.А. Использование корреляционной модели случайных квадрупольных источников для расчета эффективности экранирования шума турбулентной струи на основе геометрической теории дифракции // Акуст. журн. 2020. Т. 66(5). С. 540–555.
  11. Broadbent E.G. Noise shielding for aircraft // Prog. Aerosp. Sci. 1976. V. 17. P. 231–268.
  12. ICAO. Environmental Protection. In Annex 16 to the Convention on International Civil Aviation, 8th ed. V. I: Aircraft Noise. ICAO: Montreal, QC, Canada, 2017.
  13. Van Oosten N. SOPRANO Presentation (PDF) // SOPRANO Workshop: Madrid, Spain, 21–22 June 2007.
  14. Bridges J.E. Azimuthal Noise Directivity of Non-Axisymmetric Jets // AIAA Scitech 2021 Forum, 2021. P. 1183.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (78KB)
4.

Download (187KB)
5.

Download (380KB)
6.

Download (144KB)
7.

Download (639KB)
8.

Download (639KB)

Copyright (c) 2023 И.В. Беляев, С.Ю. Макашов, М.Ю. Зайцев, В.Г. Юдин, А.В. Потапов