Application of Low-Frequency Acoustic Signals to Study Underwater Gas Seepage
- Authors: Kosteev D.A.1,2, Bogatov N.A.1, Ermoshkin A.V.1,2, Kapustin I.A.1,2, Molkov A.A.1,2, Razumov D.D.1, Salin M.B.1
-
Affiliations:
- Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
- Lobachevsky Nizhny Novgorod State University
- Issue: Vol 70, No 4 (2024)
- Pages: 551-565
- Section: АКУСТИКА ОКЕАНА. ГИДРОАКУСТИКА
- URL: https://jdigitaldiagnostics.com/0320-7919/article/view/648409
- DOI: https://doi.org/10.31857/S0320791924040091
- EDN: https://elibrary.ru/XFIVCK
- ID: 648409
Cite item
Abstract
Remote sensing of seeps, the release of gas (mainly methane) from the seabed, is an urgent task. The importance of detecting seeps in Arctic shelf zone region is constantly growing due to the degradation of underwater permafrost and the release of gas hydrates. Gas bubbles scatter underwater sound and their resonant frequencies correspond are in the kilohertz range for seeps observed in nature. A promising method for detecting and studying seeps is probing with underwater sound near the denoted resonant frequency. This corresponds to a decrease in the operating frequency relative to the traditional method of studying high-frequency sonars, so the proposed method will be classified as low-frequency in this study. This method expands the study area due to the low sound attenuation in water and the high scattering level near at bubble resonances. Estimates of the scattering strength were carried out taking into account collective interaction (group effects) of bubles. The possibility of using low-frequency hydroacoustic systems to detect seeps has been demonstrated using the results of a full-scale experiment using a simulated bubble jet as an example. A data processing method for detecting nonstationary scatterers is proposed.
Full Text

About the authors
D. A. Kosteev
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Author for correspondence.
Email: dkosteev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod
N. A. Bogatov
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Email: dkosteev@ipfran.ru
Russian Federation, Nizhny Novgorod
A. V. Ermoshkin
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: dkosteev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod
I. A. Kapustin
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: dkosteev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod
A. A. Molkov
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky Nizhny Novgorod State University
Email: dkosteev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod
D. D. Razumov
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Email: dkosteev@ipfran.ru
Russian Federation, Nizhny Novgorod
M. B. Salin
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Email: mikesalin@ipfran.ru
Russian Federation, Nizhny Novgorod
References
- Бондур В. Г., Кузнецова Т. В. Исследования естественных нефте- и газопроявлений на морской поверхности по космическим изображениям // Аэрокосмический мониторинг объектов нефтегазового комплекса, Научный мир, 2012. С. 272.
- Shakhova N., Semiletov I. Methane release and coastal environment in the East Siberian Arctic shelf // J. Marine Systems. 2007. V. 66. P. 227–243. https:// doi.org/10.1016/J.JMARSYS.2006.06.006
- James R. H., Bousquet P., Bussmann I., Haeckel M., Kipfer R., Leifer I., Niemann H., Ostrovsky I., Piskozub J., Rehder G., Treude T., Vielstadte L., Greinert J. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review // Limnology and Oceanography. 2016. V. 61(S1). P. S283–S299. https://doi.org/10.1002/lno.10307
- Ermoshkin A., Molkov A. High-Resolution Radar Sensing Sea Surface States During AMK-82 Cruise // IEEE Journal of selected topics in applied earth observations and remote sensing. 2022. V. 15. P. 2660−2666. https://doi.org/10.1109/JSTARS.2022.3161119
- Shakova N., Semiletov I., Serienko V., Lobkovsky L. et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice // Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences. 2015. V. 373. № 2052. https://doi.org/10.1098/rsta.2014.0451
- Weidner E., Weber T. C., Mayer L., Jakobssn M., Chernykh D., Semiletov I. A wideband acoustic method for direct assessment of bubble-mediated methane flux // Continental Shelf Research, 2019. V. 173. P. 104. https://doi.org/10.1016/j.csr.2018.12.005
- Greinert J., Nutzel B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps // Geo-Marine Letters. 2004. V. 24. № 2. P. 75−84. https://doi.org/10.1007/s00367-003-0165-7
- Li J., White P. R., Bull J. M., Leighton T. G., Roche B., Davis J. W. Passive acoustic localization of undersea gas seeps using beamforming. // Int. J. of Greenhouse Gas Control. 2021. V. 108. Article Number 103316.
- Prosperetti A., Lu N. Q., Kim H. S. Active and passive acoustic behavior of bubble clouds at the ocean’s surface // J. Acoust. Soc. Am. 1993. V. 93. № 6. P. 3117–3127.
- Razaz M., Iorio D. D., Wang B., Daneshgar S., Thurnherr A. M. Variability of a natural hydrocarbon seep and its connection to the ocean surface // Scientific Reports. 2020. V. 10. Article No. 12654. https://doi.org/10.1038/s41598-020-68807-4
- Муякшин С. И., Заутер Э. Дистанционный акустический метод определения производительности подводного источника газовых пузырьков // Океанология. 2010. Т. 50. № 6. С. 1045–1051.
- Бреховских Л. М., Лысанов Ю. П. Теоретические основы акустики океана. Л.: Гидрометиздат, 1982.
- Бритенков А. К., Норкин М. С., Захаров С. Б., Травин Р. В., Стуленков А. В. Сравнительные исследования вибромеханических характеристик компактных гидроакустических преобразователей продольно-изгибного типа со сложной формой излучающей оболочки // Акуст. журн. 2023. Т. 69. № 6. С. 808−816.
- Salin M. B., Suvorov A. S. Application of energy relations at modeling scattering by FEM on resonant frequencies // Proc. Meetings on Acoust. 2013. V. 17. Article No. 070081. https://doi.org/10.1121/1.4790418
- Вьюгин П. Н., Грязнова И. Ю., Курин В. В., Кустов Л. М. Экспериментальное исследование прямого и обратного рассеяния акустических волн на тонком пузырьковом слое // Акуст. журн. 2006. Т. 52. № 5. С. 636−640.
- Акуличев В. А., Буланов В. А. Акустические исследования мелкомасштабных неоднородностей в морской среде. Владивосток: ТОИ ДВО РАН, 2017.
- Буланов В. А., Соседко Е. В. Особенности нестационарного и нелинейного рассеяния звука на пузырьках и возможности их спектроскопии // Акуст. журн. 2022. Т. 68. № 4. С. 373−384. https://doi.org/10.31857/S0320791922040025
- Урик Р. Д. Основы гидроакустики (пер. с англ. Гусева Н. М.). Л.: Судостроение, 1978.
- Bjorno L. Chapter 5 − Scattering of Sound. In Applied Underwater Acoustics. Neighbors T.H.; Bradley D., Eds. Elsevier: Amsterdam, The Netherlands, 2017. P. 302.
- Шендеров Е. Л. Излучение и рассеяние звука. Л.: Судостроение, 1989.
- Kirkup S. The Boundary Element Method in Acoustics. Integrated Sound Software, 1998/2007. (http://www.cad-cam-cae.com/blog/Kirkup98TBEMIAW.htm)
- Салин Б. М., Салин М. Б. Методы измерения бистатических характеристик рассеяния звука дном и поверхностью // Акуст. журн. 2016. Т. 62. № 5. С. 573−581. https://doi.org/10.7868/S0320791916050166
- Бялко А. В. Ламинарные цепочки пузырьков: логарифмически точное решение // Докл. Акад. наук. 2011. Т. 436. № 6. С. 747−752.
- Ermoshkin A. V., Kapustin I. A., Molkov A. A., Semiletov I. P. Manifestation of gas seepage from bottom sediments on thesea surface: theoretical model and experimental observations // Remote Sensing. 2024. V. 16. № 2. Art. No. 408. https://doi.org/10.3390/rs16020408
Supplementary files
