Holographic method of under-water noise source localization in shallow water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a high-frequency experiment for the detection and direction estimation of underwater sound noisy source are presented. The experiment was conducted in the shallow waters of the Black Sea coast. The noise emission of the source was received by three vector-scalar receivers located on the bottom. By using holographic processing, the detection and direction estimation of a moving underwater source against the background of intense shipping in the experiment region were carried out. Estimates of the input signal-to-noise ratio are presented.

Full Text

Restricted Access

About the authors

M. Yu. Glushchenko

Joint-stock company "Concern "Granit"

Author for correspondence.
Email: glushchenko.m@granit-concern.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019

V. M. Kuzkin

Joint-stock company "Concern "Granit"; Institute of General Physics RAS

Email: kumiov@yandex.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; st. Vavilova 38, Moscow, 119991

Yu. V. Matvienko

Joint-stock company "Concern "Granit"; Institute for Problems of Marine Technologies SB RAS

Email: ymat@marine.febras.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; st. Sukhanova 5a, Vladivostok, 690091

S. A. Pereselkov

Joint-stock company "Concern "Granit"; Voronezh State University

Email: pereselkov@yandex.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; Universitetskaya sq. 1, Voronezh, 394006

Yu. A. Khvorostov

Joint-stock company "Concern "Granit"; Institute for Problems of Marine Technologies SB RAS

Email: glushchenko.m@granit-concern.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; st. Sukhanova 5a, Vladivostok, 690091

S. A. Tkachenko

Voronezh State University

Email: glushchenko.m@granit-concern.ru
Russian Federation, Universitetskaya sq. 1, Voronezh, 394006

References

  1. Чупров С.Д. Интерференционная структура звукового поля в слоистом океане / Акустика океана. Современное состояние. М.: Наука, 1982. С. 71−82.
  2. Орлов Е.Ф. Интерференционная структура широкополосного звука в океане / Проблемы акустики океана. М.: Наука, 1984. С. 85−93.
  3. Ocean acoustic interference phenomena and signal processing (San Francisco, CA, May 1–3, 2001; AIP Conf. Proc.), Ed. by Kuperman W.A. and D'Spain G.L. N.Y.: Melville, 2002.
  4. Thode A.M. Source ranging with minimal environmental information using a virtual receiver and waveguide invariant theory // J. Acoust. Soc. Am. 2000. V. 108. № 4. P. 1582–1594.
  5. Rouseff D., Spindel R.C. Modeling the waveguide invariant as a distribution // AIP Conf. Proc. 2002. 621. P. 137−150.
  6. Quijanoa J.E., Zurk L.M., Rouseff D. Demonstration of the invariance principle for active sonar // J. Acoust. Soc. Am. 2008. V. 123. № 3. P. 1329−1337.
  7. Tao H., Krolik J.L. Waveguide invariant focusing for broadband beam forming in an oceanic waveguide // J. Acoust. Soc. Am. 2008. V. 123. № 3. P. 1338–1346.
  8. Cocrell K.L., Smidt H. Robust passive range estimation using the waveguide invariant // J. Acoust. Soc. Am. 2010. V. 127. № 5. P. 2780–2789.
  9. Rouseff D., Zurk L.M. Striation based beam forming for estimating the waveguide invariant with passive sonar // J. Acoust. Soc. Am. Express Lett. 2011. V. 130. № 2. P. 76–81.
  10. Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Спект-рограмма и локализация источника звука в мелком море // Акуст. журн. 2017. Т. 63. № 4. С. 406–418.
  11. Казначеев И.В., Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Интерферометрический метод обнаружения движущегося источника звука векторно-скалярным приемником // Акуст. журн. 2018. Т. 64. № 1. С. 33–45.
  12. Kuz’kin V.M., Pereselkov S.A., Kuznetsov G.N., Kaznacheev I.V. Interferometric direction finding by a vector-scalar receiver // Phys. Wave Phenom. 2018. V. 26. № 1. P. 63–73.
  13. Kuznetsov G.A., Kuz’kin V.M., Lyakhov G.A., Pereselkov S.A., Prosovetskiy D.Yu. Direction finding of a noise sound source // Phys. Wave Phenom. 2019. V. 27. № 3. P. 237−241.
  14. Pereselkov S.A., Kuz’kin V.M. Interferometric processing of hydroacoustic signals for the purpose of source localization // J. Acoust. Soc. Am. 2022. V. 151. № 2. P. 666−676.
  15. Беседина Т.Н., Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Определение глубины источника звука в мелком море на фоне интенсивного шума // Акуст. журн. 2015. Т. 61. № 6. С. 718–728.
  16. Kuz’kin V.M., Kuznetsov G.N., Pereselkov S.A., Grigor’ev V.A. Resolving power of the interferometric method of source localization // Phys. Wave Phenom. 2018. V. 26. № 2. P. 150–159.
  17. Пересёлков С.А., Кузькин В.М., Кузнецов Г.Н., Просовецкий Д.Ю., Ткаченко С.А. Интерференционный метод оценки координат движущегося шумового источника в мелком море с использованием высокочастотных сигналов // Акуст. журн. 2020. Т. 66. № 4. С. 437–445.
  18. Kuz’kin V.M., Lyakhov G.A., Pereselkov S.A., Matvienko Yu.V., Tkachenko S.A. Noise-source detection in an oceanic waveguide using interferometric processing // Phys. Wave Phenom. 2020. V. 28. № 1. P. 68−74.
  19. Хворостов Ю.А., Матвиенко Ю.В. Характеристики собственного шумоизлучения малогабаритного АНПА // Подводные исследования и робототехника. 2019. № 4 (30). С. 58−63.
  20. Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. Л.: Гидрометеоиздат, 1982. 264 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the AUV movement (dashed line) relative to the location of the VSP, C – starting point, F – finishing point.

Download (42KB)
3. Fig. 2. Normalized (a) — interferogram, (b) — hologram module, (c) — detection function.

Download (260KB)
4. Fig. 3. Normalized (a) — interferogram, (b) — hologram module, (c) — detection function.

Download (218KB)
5. Fig. 4. Normalized (a) — interferogram, (b) — hologram module, (c) — detection function.

Download (264KB)
6. Fig. 5. Normalized (a) — interferogram, (b) — hologram module, (c) — detection function.

Download (274KB)
7. Fig. 6. Normalized (a) — interferogram, (b) — hologram module, (c) — detection function.

Download (248KB)
8. Fig. 7. Normalized (a) — interferogram, (b) — hologram module, (c) — detection function.

Download (257KB)
9. Fig. 8. Normalized (a, g) — interferograms, (b, d) — hologram modules, (c, e) — detection functions: (a, b, c) — before clearing from interference, (g, d, e) — after clearing from interference. Time 14:19. Approaching AUV1. Direct tack.

Download (498KB)
10. Fig. 9. Time dependence of the normalized detection function G (t): (a) — VSP1, (b) — VSP2, (c) — VSP3.

Download (99KB)
11. Fig. 10. Time dependence of bearing (t): (a) — VSP1, (b) — VSP2, (c) — VSP3.

Download (151KB)

Copyright (c) 2024 The Russian Academy of Sciences