Holographic method of under-water noise source localization in shallow water
- Authors: Glushchenko M.Y.1, Kuzkin V.M.1,2, Matvienko Y.V.1,3, Pereselkov S.A.1,4, Khvorostov Y.A.1,3, Tkachenko S.A.4
-
Affiliations:
- Joint-stock company "Concern "Granit"
- Institute of General Physics RAS
- Institute for Problems of Marine Technologies SB RAS
- Voronezh State University
- Issue: Vol 70, No 3 (2024)
- Pages: 67-77
- Section: АКУСТИКА ОКЕАНА. ГИДРОАКУСТИКА
- URL: https://jdigitaldiagnostics.com/0320-7919/article/view/648411
- DOI: https://doi.org/10.31857/S0320791924030076
- EDN: https://elibrary.ru/ZMEKAR
- ID: 648411
Cite item
Abstract
The results of a high-frequency experiment for the detection and direction estimation of underwater sound noisy source are presented. The experiment was conducted in the shallow waters of the Black Sea coast. The noise emission of the source was received by three vector-scalar receivers located on the bottom. By using holographic processing, the detection and direction estimation of a moving underwater source against the background of intense shipping in the experiment region were carried out. Estimates of the input signal-to-noise ratio are presented.
Full Text

About the authors
M. Yu. Glushchenko
Joint-stock company "Concern "Granit"
Author for correspondence.
Email: glushchenko.m@granit-concern.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019
V. M. Kuzkin
Joint-stock company "Concern "Granit"; Institute of General Physics RAS
Email: kumiov@yandex.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; st. Vavilova 38, Moscow, 119991
Yu. V. Matvienko
Joint-stock company "Concern "Granit"; Institute for Problems of Marine Technologies SB RAS
Email: ymat@marine.febras.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; st. Sukhanova 5a, Vladivostok, 690091
S. A. Pereselkov
Joint-stock company "Concern "Granit"; Voronezh State University
Email: pereselkov@yandex.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; Universitetskaya sq. 1, Voronezh, 394006
Yu. A. Khvorostov
Joint-stock company "Concern "Granit"; Institute for Problems of Marine Technologies SB RAS
Email: glushchenko.m@granit-concern.ru
Russian Federation, Gogolevsky Blvd. 31, Moscow, 119019; st. Sukhanova 5a, Vladivostok, 690091
S. A. Tkachenko
Voronezh State University
Email: glushchenko.m@granit-concern.ru
Russian Federation, Universitetskaya sq. 1, Voronezh, 394006
References
- Чупров С.Д. Интерференционная структура звукового поля в слоистом океане / Акустика океана. Современное состояние. М.: Наука, 1982. С. 71−82.
- Орлов Е.Ф. Интерференционная структура широкополосного звука в океане / Проблемы акустики океана. М.: Наука, 1984. С. 85−93.
- Ocean acoustic interference phenomena and signal processing (San Francisco, CA, May 1–3, 2001; AIP Conf. Proc.), Ed. by Kuperman W.A. and D'Spain G.L. N.Y.: Melville, 2002.
- Thode A.M. Source ranging with minimal environmental information using a virtual receiver and waveguide invariant theory // J. Acoust. Soc. Am. 2000. V. 108. № 4. P. 1582–1594.
- Rouseff D., Spindel R.C. Modeling the waveguide invariant as a distribution // AIP Conf. Proc. 2002. 621. P. 137−150.
- Quijanoa J.E., Zurk L.M., Rouseff D. Demonstration of the invariance principle for active sonar // J. Acoust. Soc. Am. 2008. V. 123. № 3. P. 1329−1337.
- Tao H., Krolik J.L. Waveguide invariant focusing for broadband beam forming in an oceanic waveguide // J. Acoust. Soc. Am. 2008. V. 123. № 3. P. 1338–1346.
- Cocrell K.L., Smidt H. Robust passive range estimation using the waveguide invariant // J. Acoust. Soc. Am. 2010. V. 127. № 5. P. 2780–2789.
- Rouseff D., Zurk L.M. Striation based beam forming for estimating the waveguide invariant with passive sonar // J. Acoust. Soc. Am. Express Lett. 2011. V. 130. № 2. P. 76–81.
- Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Спект-рограмма и локализация источника звука в мелком море // Акуст. журн. 2017. Т. 63. № 4. С. 406–418.
- Казначеев И.В., Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Интерферометрический метод обнаружения движущегося источника звука векторно-скалярным приемником // Акуст. журн. 2018. Т. 64. № 1. С. 33–45.
- Kuz’kin V.M., Pereselkov S.A., Kuznetsov G.N., Kaznacheev I.V. Interferometric direction finding by a vector-scalar receiver // Phys. Wave Phenom. 2018. V. 26. № 1. P. 63–73.
- Kuznetsov G.A., Kuz’kin V.M., Lyakhov G.A., Pereselkov S.A., Prosovetskiy D.Yu. Direction finding of a noise sound source // Phys. Wave Phenom. 2019. V. 27. № 3. P. 237−241.
- Pereselkov S.A., Kuz’kin V.M. Interferometric processing of hydroacoustic signals for the purpose of source localization // J. Acoust. Soc. Am. 2022. V. 151. № 2. P. 666−676.
- Беседина Т.Н., Кузнецов Г.Н., Кузькин В.М., Пересёлков С.А. Определение глубины источника звука в мелком море на фоне интенсивного шума // Акуст. журн. 2015. Т. 61. № 6. С. 718–728.
- Kuz’kin V.M., Kuznetsov G.N., Pereselkov S.A., Grigor’ev V.A. Resolving power of the interferometric method of source localization // Phys. Wave Phenom. 2018. V. 26. № 2. P. 150–159.
- Пересёлков С.А., Кузькин В.М., Кузнецов Г.Н., Просовецкий Д.Ю., Ткаченко С.А. Интерференционный метод оценки координат движущегося шумового источника в мелком море с использованием высокочастотных сигналов // Акуст. журн. 2020. Т. 66. № 4. С. 437–445.
- Kuz’kin V.M., Lyakhov G.A., Pereselkov S.A., Matvienko Yu.V., Tkachenko S.A. Noise-source detection in an oceanic waveguide using interferometric processing // Phys. Wave Phenom. 2020. V. 28. № 1. P. 68−74.
- Хворостов Ю.А., Матвиенко Ю.В. Характеристики собственного шумоизлучения малогабаритного АНПА // Подводные исследования и робототехника. 2019. № 4 (30). С. 58−63.
- Бреховских Л.М., Лысанов Ю.П. Теоретические основы акустики океана. Л.: Гидрометеоиздат, 1982. 264 с.
Supplementary files
