Modification of Dean's Method for Determining Impedance with an Inhomogeneous Sound Field in a Resonator
- Authors: Palchikovsky V.V.1
-
Affiliations:
- Perm National Research Polytechnic University
- Issue: Vol 70, No 4 (2024)
- Pages: 608-621
- Section: АТМОСФЕРНАЯ И АЭРОАКУСТИКА
- URL: https://jdigitaldiagnostics.com/0320-7919/article/view/648430
- DOI: https://doi.org/10.31857/S0320791924040132
- EDN: https://elibrary.ru/XAPRPA
- ID: 648430
Cite item
Abstract
A modification of Dean’s method is proposed for determining the impedance in the case of a nonuniform sound field on the front and bottom surfaces of a resonator. Instead of acoustic pressures in Dean’s formula, the modification uses the coefficients of eigenfunctions, which correspond to a uniform acoustic pressure distribution on the front and bottom surfaces of the resonator. The eigenproblem is solved by the finite element method; the coefficients of the eigenfunctions are found by the least squares method. At the current stage of research, the full-scale experiment has been replaced by numerical simulation in a linear formulation of sound propagation in an impedance tube with normal wave incidence with a honeycomb resonator attached to it. The inhomogeneity of the pressure field over the cross section of the resonator is created from the different positions of holes in the resonator face plate. The study is done for a different number of acoustic pressure measurement points at the bottom of the resonator. Calculations show that the proposed method is efficient and provides good agreement with the straight method for determining impedance. However, the possibilities of using modification of Dean’s method in full-scale measurements are limited, because accurate resonator impedance determination requires a large number of measurement points.
Full Text

About the authors
V. V. Palchikovsky
Perm National Research Polytechnic University
Author for correspondence.
Email: vvpal@pstu.ru
Russian Federation, Perm
References
- ISO 10534-1; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes. Part 1: Method Using Standing Wave Ratio. ISO: Geneva, Switzerland, 1996.
- ISO 10534-2; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedances Tubes. Part 2: Transfer Function Method. ISO: Geneva, Switzerland, 1996.
- Dean P. D. An in-situ method of wall acoustic impedance measurement in flow duct // J. Sound Vib. 1974. V. 34. № 1. P. 97−130.
- Комкин А. И. Методы измерения акустических характеристик звукопоглощающих материалов // Измерительная техника. 2003. № 3. С. 47−50.
- Jones M. G., Watson W. R., Tracy M. B., Parrott T. L. Comparison of two waveguide methods for educating liner impedance in grazing flow // AIAA Journal. 2004. V. 42. P. 232−240.
- Elnady T., Boden H. An inverse analytical method for extracting liner impedance from pressure measurements // AIAA Paper. 2004. 2004–2836.
- Jing X., Peng S., Sun X. A straightforward method for wall impedance eduction in a flow duct // J. Acoust. Soc. Am. 2008. V. 124. № 1. P. 227−234.
- Piot E., Primusy J., Simonz F. Liner impedance eduction technique based on velocity fields // AIAA Paper. 2012. 2012–2198.
- Weng Ch., Schulz A., Ronneberger D., Enghardt L., Bake F. Flow and viscous effects on impedance eduction // AIAA Journal. 2018. V. 56. № 3. P. 1118–1132.
- Остриков Н. Н., Яковец М. А., Ипатов М. С. Экспериментальное подтверждение аналитической модели распространения звука в прямоугольном канале при наличии скачков импеданса и разработка на ее основе метода извлечения импеданса // Акуст. журн. 2020. Т. 66. С. 128−147.
- Tam C. K. W., Kurbatskii K. A. A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners // J. Sound Vib. 2001. V. 245. № 3. P. 545−557.
- Абалакин И. В., Горобец А. В., Козубская Т. К. Вычислительные эксперименты по звукопоглощающим конструкциям // Математическое моделирование. 2007. Т. 19. № 8. С. 15−21.
- Roche J. M., Leylekian L., Delattre G., Vuillot F. Aircraft fan noise absorption: DNS of the acoustic dissipation of resonant liners // AIAA Paper. 2009. 2009–3146.
- Zhang Q., Bodony D. J. Impedance predictions of 3D honeycomb liner with circular apertures by DNS // AIAA Paper. 2011. 2011–2727.
- Синер А. А., Мякотникова А. С. Численное исследование акустических свойств звукопоглощающих конструкций // Ученые записки ЦАГИ. 2012. Т. 43. № 4. С. 95−110.
- Lavieille M., Bennani A., Balin N. Numerical simulations of perforate liners: Part I - Model description and impedance validation // AIAA Paper. 2013. 2013–2269.
- Mann A., Pérot F., Kim M.-S., Casalino D. Characterization of acoustic liners absorption using a lattice-Boltzmann method // AIAA Paper. 2013. 2013–2271.
- Храмцов И. В., Кустов О. Ю., Федотов Е. С., Синер А. А. Численное моделирование механизмов гашения звука в ячейке звукопоглощающей конструкции // Акуст. журн. 2018. Т. 64. № 4. С. 508−514.
- Jensen M. H., Shaposhnikov K., Svensson E. Using the linearized Navier Stokes equations to model acoustic liners // AIAA Paper. 2018. 2018–3783.
- Khramtsov I. V., Kustov O. Yu., Palchikovskiy V. V. Adaptation of the Dean method to determine the acoustic characteristics of liner samples based on numerical simulation of physical processes in a normal incidence impedance tube // 2020 Int. Conf. on Dynamics and Vibroacoustics of Machines. 16–18 Sept. 2020. Samara. Russia.
- Khramtsov I., Kustov O., Palchikovskiy V., Ershov V. Investigation of the reason for the difference in the acoustic liner impedance determined by the transfer function method and Dean’s method // Akustika. 2021. № 39. P. 224−229.
- Ou Y., Zhao Y. Prediction of the absorption characteristics of non-uniform acoustic absorbers with grazing flow // Applied Sciences. 2023. V. 13. № 4. P. 2256−2277.
- Melling T. H. The acoustic impendance of perforates at medium and high sound pressure levels // J. Sound Vib. 1973. V. 21. № 1. P. 1−65.
- Guess A. W. Calculation of perforated plate liner parameters from specified acoustic resistance and reactance // J. Sound Vib. 1975. V. 40. № 1. P. 119−137.
- Kooi J. W., Sarin S. L. An experimental study of the acoustic impedance of Helmholtz resonator arrays under a turbulent boundary layer // 7th Aeroacoustics Conf., Palo Alto, CA, October 5−7, 1981.
- Motsinger R. E., Kraft R. E. Design and performance of duct acoustic treatment // Aeroacoustics of flight vehicles. Theory and practice. Volume 2: Noise Control, 1991.
- Hersh A. S., Walker B. E., Celano J. W. Helmholtz resonator impedance model, Part 1: Nonlinear behavior // AIAA Journal. 2003. V. 41. № 25. P. 795−808.
- Соболев А. Ф. Полуэмпирическая теория однослойных сотовых звукопоглощающих конструкций с лицевой перфорированной панелью // Акуст. журн. 2007. Т. 53. № 6. С. 861−872.
- Yu J., Ruiz M., Kwan H. W. Validation of Goodrich perforate liner impedance model using NASA Langley test data // AIAA Paper. 2008. 2008–2930.
- Rienstra S. W., Singh D. K. Nonlinear asymptotic impedance model for a Helmholtz resonator of finite depth // AIAA Journal. 2018. V. 56. № 5. P. 1792−1802.
- Eversman W., Drouin M., Locke J., McCartney J. Impedance models for single and two degree of freedom linings and correlation with grazing flow duct testing // Int. J. of Aeroacoustics. 2021. V. 20. P. 497−529.
- Gaeta R. J., Mendoza J. M., Jones M. G. Implementation of in-situ impedance techniques on a full scale aero-engine system // AIAA Paper. 2007. 2007–3441.
- Yan Q., Xue D., Mu Q., Yang J., Gao X., Huang W. Acoustic experimental technology for aircraft nacelle liner // Aerospace. 2023. V. 10. № 1. P. 56−72.
- Palchikovskiy V., Kuznetsov A., Khramtsov I., Kustov O. Comparison of semi-empirical impedance models for locally-reacting acoustic liners in a wide range of sound pressure levels // Acoustics. 2023. V. 5. № 3. P. 676−692.
- Федотов Е. С., Кустов О. Ю., Храмцов И. В., Пальчиковский В. В. Сравнительный анализ акустических интерферометров на основе расчетно-экспериментальных исследований образцов звукопоглощающих конструкций // Вестник ПНИПУ. Аэрокосмическая техника. 2017. № 48. С. 89−103.
Supplementary files
