A Multi-Element Low-Frequency Ultrasonic Transducer as a Source of High-Intensity Focused Ultrasound in Air

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The acoustic and electrical properties of a 128-element ultrasonic transducer designed to generate high-intensity focused ultrasound in air in the low-frequency ultrasonic range are investigated. To reduce parasitic grating maxima of the acoustic field, a spiral arrangement of piezoelectric elements on a spherical base was used. The operating frequency of the transducer was 35.5 kHz, and the diameter of the source and focal length were approximately 50 cm, significantly exceeding the wavelength (approximately 1 cm). This selection of parameters allowed for effective focusing, with localization of wave energy in a small focal region, thereby achieving extremely high levels of ultrasonic intensity. The parameters of the ultrasonic field were studied using a combined approach that included microphone recording of the acoustic pressure and measuring the acoustic radiation force acting on a conical reflector. Acoustic source parameters were determined from the two-dimensional spatial distribution of the acoustic pressure waveform, which was measured by scanning the microphone in a transverse plane in front of the source. Numerical modeling of nonlinear wave propagation was also used based on the Westervelt equation to simulate the behavior of intense waves. The acoustic pressure level reached 173 dB, with a focal spot size comparable to the wavelength.

Full Text

Restricted Access

About the authors

S. A. Asfandiyarov

Lomonosov Moscow State University

Author for correspondence.
Email: asfandiiarov.sa14@physics.msu.ru
Russian Federation, Moscow

S. A. Tsysar

Lomonosov Moscow State University

Email: asfandiiarov.sa14@physics.msu.ru
Russian Federation, Moscow

O. A. Sapozhnikov

Lomonosov Moscow State University

Email: asfandiiarov.sa14@physics.msu.ru
Russian Federation, Moscow

References

  1. Бэйли М. Р., Хохлова В. А., Сапожников О. А., Каргл С. Г., Крам Л. А. Физические механизмы воздействия терапевтического ультразвука на биологическую ткань. (Обзор) // Акустический журнал. 2003. Т. 49. № 4. P. 437–464.
  2. Sapozhnikov O. A., Khokhlova V. A., Cleveland R. O., Blanc-Benon P., Hamilton M.F. Nonlinear Acoustics Today // Acoust. Today. 2019. V. 15, № 3. P. 55.
  3. Gallego-Juarez J. A., Graff K. F., Lucas M. Power Ultrasonics. Woodhead Publishing, 2023.
  4. Charoux C. M. G., Ojha K. S., O’Donnell C. P., Cardoni A., Tiwari B. K. Applications of airborne ultrasonic technology in the food industry // J. of Food Engineering. 2017. V. 208. P. 28–36.
  5. Gallego-Juarez J. A. High-power ultrasonic processing: Recent developments and prospective advances // Physics Procedia. 2010. V. 3, № 1. P. 35–47.
  6. Борисов Ю. Я., Гныкина Н. М. Акустическая сушка // Физические основы ультразвуковой технологии. М.: Наука, 1970. С. 686.
  7. Khmelev V. N., Shalunov A. V., Nesterov V. A., Dorovskikh R. S., Golykh R. N. Ultrasonic radiators for the action on gaseous media at high temperatures // 2015 16th Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices. Erlagol, Russia: IEEE, 2015. P. 224–228.
  8. Khmelev V. N., Tsyganok S. N., Barsukov R. V., Khmelev M. V., Barsukov A. R. Ultrasonic devices for noncontact intensification of technological processes // Fibre Chem. 2022. V. 53. № 6. P. 391–394.
  9. Зверев В. А. Как зарождалась идея параметрической акустической антенны // Акуст. журн. 1999. Т. 45. № 5. С. 685–692.
  10. Bennett M. B., Blackstock D. T. Parametric array in air // J. Acoust. Soc. Am. 1975. V. 57. № 3. P. 562–568.
  11. Pompei F. J. The use of airborne ultrasonics for generating audible sound beams // J. of the Audio Engineering Society. 1999. V. 47, № 9.
  12. Виноградов Н. С., Дорофеев М. С., Коробов А. И., Михайлов C. Г., Руденко О.В., Шанин А.В., Шилкин А.В. О нелинейной генерации звука в воздухе волнами ультразвуковых частот // Акуст. журн. 2005. Т. 51. № 2. С. 189–194.
  13. Коробов А. И., Изосимова М. Ю., Ненарокомов К. А., Одина Н. И. Дистанционная диагностика резиноподобных материалов методами нелинейной акустики // Письма в журнал технической физики. 2017. Т. 43. № 17. С. 86.
  14. Marzo A., Barnes A., Drinkwater B.W. TinyLev: A multi-emitter single-axis acoustic levitator // Review of Scientific Instruments. 2017. V. 88, № 8. P. 085105.
  15. Marzo A., Caleap M., Drinkwater B. W. Acoustic virtual vortices with tunable orbital angular momentum for trapping of Mie particles // Phys. Rev. Lett. 2018. V. 120. № 4. P. 044301.
  16. Marzo A., Seah S. A., Drinkwater B. W., Sahoo D. R., Long B., Subramanian S. Holographic acoustic elements for manipulation of levitated objects // Nat. Commun. 2015. V. 6. № 1. P. 8661.
  17. Haupt R. W. High-powered parametric acoustic array in air // J. Acoust. Soc. Am. 2009. V. 125. № 4. Supplement. P. 2688–2688.
  18. Liebler M., Kling C., Gerlach A., Koch C. Experimental characterization of high-intensity focused airborne ultrasound fields // J. Acoust. Soc. Am. 2020. V. 148. № 3. P. 1713–1722.
  19. Гейер А. Ф., Пономарев В. А. Разработка пьезокерамических электроакустических преобразователей для акустических устройств со звуковым давлением 125 дБ и более // Вопросы радиоэлектроники. 2019. № 10. С. 11–16.
  20. Гаврилов Л. Р., Сапожников О. А., Хохлова В. А. Спиральное расположение элементов двумерных ультразвуковых терапевтических решеток как метод повышения интенсивности в фокусе // Изв. РАН. Сер. физ. 2015. Т. 79. № 10. С. 1386–1392.
  21. Bawiec C. R., Khokhlova T. D., Sapozhnikov O. A., Rosnitskiy P. B., Cunitz B. W., Ghanem M. A., Hunter C., Kreider W., Schade G. R., Yuldashev P. V., Khokhlova V. A. A Prototype therapy system for boiling histotripsy in abdominal targets based on a 256-element spiral array // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2021. V. 68. № 5. P. 1496–1510.
  22. Tsysar S. A., Rosnitskiy P. B., Asfandiyarov S. A., Petrosyan S. A., Khokhlova V. A., Sapozhnikov O. A. Phase correction of the channels of a fully populated randomized multielement therapeutic array using the acoustic holography method // Acoust. Phys. 2024. V. 70. № 1. P. 82–89.
  23. Сапожников О.А., Пономарев А.Е., Смагин М.А. Нестационарная акустическая голография для реконструкции скорости поверхности акустических излучателей // Акуст. журн. 2006. Т. 52. № 3. С. 385–392.
  24. Sapozhnikov O. A., Tsysar S. A., Khokhlova V. A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am. 2015. V. 138. № 3. P. 1515–1532.
  25. Цысарь С. А., Николаев Д. А., Сапожников О. А. Широкополосная виброметрия двумерной ультразвуковой решетки методом нестационарной акустической голографии // Акуст. журн. 2021. Т. 67. № 3. С. 328–337.
  26. Калоев А. З., Николаев Д. А., Хохлова В. А., Цысарь С. А., Сапожников О. А. Пространственная коррекция акустической голограммы для восстановления колебаний поверхности аксиально-симметричного ультразвукового излучателя // Акуст. журн. 2022. Т. 68. № 1. С. 83–95.
  27. Nikolaev D. A., Tsysar S. A., Khokhlova V. A., Kreider W., Sapozhnikov O. A. Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions // J. Acoust. Soc. Am. 2021. Т. 149. № 1. С. 386–404.
  28. Колесников А. Е. Ультразвуковые измерения. Изд. 2-е доп. и перераб. М: Изд-во стандартов, 1982. 247 p.
  29. Maruvada S., Harris G. R., Herman B. A., King R. L. Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique // J. Acoust. Soc. Am. 2007. V. 121. № 3. P. 1434–1439.
  30. Duck F. Ultrasonic metrology II — The history of the measurement of acoustic power and intensity using radiation force // Med. Phys. Int. J. 2021. V. 5. P. 519–536.
  31. Shou W., Huang X., Duan S., Xia R., Shi Z., Geng X., Li F. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force // Ultrasonics. 2006. V. 44. P. e17–e20.
  32. Юлдашев П. В., Мездрохин И. С., Хохлова В. А. Моделирование высокоинтенсивных полей сильно фокусирующих ультразвуковых излучателей с использованием широкоугольного параболического приближения // Акуст. журн. 2018. Т. 64. № 3. С. 318–329.
  33. Yuldashev P. V., Karzova M. M., Kreider W., Rosnitskiy P. B., Sapozhnikov O. A., Khokhlova V. A. “HIFU Beam:” A simulator for predicting axially symmetric nonlinear acoustic fields generated by focused transducers in a layered medium // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2021. V. 68. № 9. P. 2837–2852.
  34. Sapozhnikov O. A., Bailey M. R. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid // J. Acoust. Soc. Am. 2013. V. 133. № 2. P. 661–676.
  35. Терзи М. Е., Цысарь С. А., Юлдашев П. В., Карзова М. М., Сапожников О.А. Получение закрученного ультразвукового пучка с помощью фазовой пластины с угловой зависимостью толщины // Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2017. № 1. С. 58.
  36. Eargle J. Loudspeaker Handbook. Springer US, 2003.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photograph of the fabricated 128-element focusing grating and associated equipment. 1 - grating, 2 - household power amplifier Atoll AM 200, 3 - signal generator Agilent 33120A

Download (165KB)
3. Fig. 2. (a) - frequency dependences of the real (solid line) and imaginary (dashed line) parts of the impedance Z1 of one grid element, (b) - impedance ZΣ of 128 grid elements connected in parallel, (c) - impedance Z of the grid with the connected matching device; the inset shows the scheme of the device matching the voltage source U with the electric load ZΣ

Download (106KB)
4. Fig. 3. (a) - scheme of measurements with a microphone moving along the hologram plane in front of the radiating antenna array at a distance of 240 mm from its centre. (b) - typical time profile of the electrical signal on the microphone at one of the points of the hologram at pulse excitation of the antenna array. (c) - distribution of the acoustic pressure amplitude along the hologram surface measured at the grating operating frequency of 35.5 kHz

Download (220KB)
5. Fig. 4. Photograph of the experimental setup for measuring the electroacoustic efficiency of the ultrasonic grating based on the acoustic radiation force measurement. 1 - ultrasonic grating, 2 - conical reflector, 3 - precision scales, 4 - wattmeter

Download (407KB)
6. Fig. 5. Distributions of the amplitude Aν and phase φν of the normal component of the vibrational velocity on the grating surface at the operating frequency of 35.5 kHz and at 36 kHz

Download (693KB)
7. Fig. 6. Distribution of the intensity Iac of acoustic radiation, normalised to the total acoustic power Wac of the radiation, on the x-axis in the focal plane at frequencies 35.5 kHz (solid line) and 36 kHz (dashed line)

Download (57KB)
8. Fig. 7. Frequency dependences of the acoustic power at a voltage of 1 V on the elements of the grating: solid line - calculation from the full hologram, dots - the result of measurement by the acoustic radiometer method, dashed line - calculation from a section of the hologram in the form of a circle with a diameter of 180 mm

Download (69KB)
9. Fig. 8. Frequency dependence of the electroacoustic efficiency of the grating

Download (56KB)
10. Fig. 9. Acoustic pressure profiles in the focus measured at different levels of excitation of the elements. Dashed line - profile in the linear regime at the amplitude of electric voltage 0.5 V on the elements (pressure scale - left). Solid lines - profiles in the nonlinear regime; thick line - at a voltage amplitude of 5.8 V, thin line at 7.7 V (pressure scale - right)

Download (75KB)
11. Fig. 10. Acoustic wave profiles at the focus obtained by numerical modelling using the ‘HIFU beam’ complex at the voltage amplitude at the transmitter of 7 V (dashed line) and 10 V (solid line)

Download (64KB)

Copyright (c) 2024 The Russian Academy of Sciences