Peculiarities of flexural wave propagation in a notched bar
- Authors: Agafonov A.A.1, Izosimova M.Y.1, Zhostkov R.A.2, Kokshayskiy A.I.1, Korobov A.I.1, Odina N.I.1
-
Affiliations:
- Moscow State University named after M.V. Lomonosov
- Institute of Physics of the Earth named after O.Yu. Schmidt RAS
- Issue: Vol 70, No 3 (2024)
- Pages: 3-12
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://jdigitaldiagnostics.com/0320-7919/article/view/648371
- DOI: https://doi.org/10.31857/S0320791924030019
- EDN: https://elibrary.ru/ZNMUGZ
- ID: 648371
Cite item
Abstract
The results of numerical modeling and experimental studies of the propagation of flexural elastic waves in a metal notched bar approximates the effect of an acoustic black hole are presented. The sample is a bar with notches, the depth of which increases according to the power law with an exponent equal to (4/3). It has been confirmed experimentally and with the simulation results, that such bars slow down the propagation of an elastic wave to the end of the bar. It is shown in such structures flexural waves have dispersion and their localization at the end of the bar is higher for some natural frequencies than that of a solid rod. The natural oscillations of the whole and notched bars are compared, i.e. the shape of the amplitude of the flexural wave along the rods. The dependence of the flexural wave length in a notched bar on the frequency is investigated as a wave propagates to the end of the bar.
Full Text

About the authors
A. A. Agafonov
Moscow State University named after M.V. Lomonosov
Email: aikor42@mail.ru
Faculty of Physics
Russian Federation, Leninskie Gory, Moscow, 119991M. Yu. Izosimova
Moscow State University named after M.V. Lomonosov
Email: aikor42@mail.ru
Faculty of Physics
Russian Federation, Leninskie Gory, Moscow, 119991R. A. Zhostkov
Institute of Physics of the Earth named after O.Yu. Schmidt RAS
Email: aikor42@mail.ru
Russian Federation, Gruzinskaya st. 10, building 1, Moscow, 123995
A. I. Kokshayskiy
Moscow State University named after M.V. Lomonosov
Email: aikor42@mail.ru
Faculty of Physics
Russian Federation, Leninskie Gory, Moscow, 119991A. I. Korobov
Moscow State University named after M.V. Lomonosov
Author for correspondence.
Email: aikor42@mail.ru
Faculty of Physics
Russian Federation, Leninskie Gory, Moscow, 119991
N. I. Odina
Moscow State University named after M.V. Lomonosov
Email: aikor42@mail.ru
Faculty of Physics
Russian Federation, Leninskie Gory, Moscow, 119991References
- Миронов М.А. Распространение изгибной волны в пластине, толщина которой плавно уменьшается до нуля на конечном интервале // Акуст. журн. 1988. Т. 34. №. 3. C. 546–547.
- Krylov V.V., Shuvalov A.L. Propagation of localised flexural vibrations along plate edges described by a power law // Proc. of the Institute of Acoustics. 2000. V. 22. № 2. P. 263–270.
- Krylov V.V. Localized acoustic modes of a quadratic solid wedge // Moscow University Physics Bulletin. 1990. V. 45. №. 6. P. 65–69.
- Krylov V.V., Tilman F.J.B.S. Acoustic ‘black holes’ for flexural waves as effective vibration dampers // J. Sound Vib. 2004. V. 274. № 3−5. P. 605–619.
- Pelat A., Gautiera F., Conlon S.C., Semperlotti F. The acoustic black hole: A review of theory and applications // J. Sound Vib. 2020. V. 476. P. 115316.
- Guasch O., Arnela M., Sánchez-Martín P. Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations // J. Sound Vib. 2017. V. 395. P. 65–79.
- Krylov V.V. Acoustic black holes: recent developments in the theory and applications // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014. V. 61. № 8. P. 1296–1306.
- Bayod J.J. Experimental study of vibration damping in a modified elastic wedge of power-law profile // J. Vibr. Acoust. 2011. V. 133. № 6. P. 061003.
- Ji H., Luo J., Qiu J., Cheng L. Investigations on flexural wave propagation and attenuation in a modified one-dimensional acoustic black hole using a laser excitation technique // Mechanical Systems and Signal Processing. V. 104. 2018. P. 19−35.
- O’Boy D.J., Krylov V.V. and Kralovic V. Damping of flexural vibrations in rectangular plates using the acoustic black hole effect // J. Sound Vib. 2010. V. 329. P. 4672–4688.
- Агафонов А.А., Коробов А.И., Изосимова М.Ю., Кокшайский А.И., Одина Н.И. Особенности распространения волн Лэмба в клине из АБС пластика с параболическим профилем // Акуст. журн. 2022. Т. 68. № 5. С. 467–474.
- Миронов М.А. Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения // Акуст. журн. 2017. Т. 63. № 5. С. 3–8.
- Миронов М.А. Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения вдоль его оси // IX Всесоюзная акустическая конференция. 1991. Секция Л. С. 23–26.
- Миронов М.А. Разрезной стержень как вибрационная черная дыра // Акуст. журн. 2019. Т. 65. № 6. C. 736–739.
Supplementary files
