The Complex of Steroid Hormones in Invertebrate Hydrobionts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The presence of a complex of biologically active steroid compounds (BASC) – hydrocortisone, corticosterone, progesterone, testosterone and estrogens (vertebrate hormones) in invertebrate hydrobionts of different phylogenetic levels was revealed in the experiments. The features of the quantitative content of BASC in different organs/tissues of hydrobionts and their changes at different stages of development are shown. The level of BASC in organisms or their organs is largely due to their own steroidogenesis, but at the same time, organisms can accumulate exogenous steroid compounds. The adaptive role of ALS in some invertebrates in changing conditions of the aquatic environment has been found. The similarity of the concentration of steroid compounds in different groups of bionts leads to the idea of a certain “physiological constant” of this complex of compounds in all organisms.

Full Text

Restricted Access

About the authors

S. M. Nikitina

Immanuel Kant Baltic Federal University

Email: swetmih@gmail.com
Russian Federation, Kaliningrad

J. J. Polunina

Immanuel Kant Baltic Federal University; Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: jul_polunina@mail.ru
Russian Federation, Kaliningrad; Moscow

References

  1. Ганжа Е.В., Павлов Е.Д. 2019. Суточная динамика тиреоидных и половых стероидных гормонов в крови молоди радужной форели // Биология внутр. вод. № 3. С. 80. https://doi.org/10.1134/S0320965219040065
  2. Кунин Е.В. 2014. Логика случая. О природе и происхождении биологической эволюции. М.: Центрполиграф.
  3. Майстренко Н.А., Колесников Г.С., Вавилов А.В. и др. 1999. Уровень секреции стероидов в отдаленные сроки после оперативного устранения эндогенного гиперкортицизма // Клиническая и экспериментальная хирургия. № 1. С. 151.
  4. Кудикина Н.П. 2011. Влияние гормональных соединений на эмбриогенез прудовика Lymnaea stagnalis (Lam., 1799) // Онтогенез. Т. 42. № 3. С. 213.
  5. Никитина С.М. и др. 1977а. Гидрокортизон и кортикостерон в телах и тканях некоторых беспозвоночных животных // Вестн. Академии наук БССР. Сер. Биол. науки. № 2. С. 108.
  6. Никитина С.М. и др. 1977б. Препаративное выделение прогестерона, тестостерона и эстрогенов из тканей морских беспозвоночных // Журн. эволюционной биохимии и физиологии. № 4. С. 443.
  7. Никитина С.М. 1982. Стероидные гормоны беспозвоночных животных. Л.: Ленинград. гос. ун-т.
  8. Никитина С.М. 2019. Биологически активные стероидные соединения беспозвоночных животных. Калининград: БФУ им. И. Канта.
  9. Никитина С.М., Чибисова Н.В. 2011. Динамика глюкокортикоидов в онтогенезе длиннопалого речного рака (Astacus leptodactylus Esch) // Онтогенез. Т. 42. № 3. С. 232.
  10. Орбели Л.А. 1961. Основные задачи и методы эволюционной физиологии. Избранные труды. М.: АН СССР. Т. 1. С. 59.
  11. Полунина Ю.Ю., Никитина С.М. 2014. Влияние стероидных соединений на темпы роста и плодовитость ветвистоусых ракообразных (Cladocera) // Вода: химия и экология. № 6. C. 68.
  12. Романенко В.Н. 2013. Основы сравнительной физиологии беспозвоночных: уч. пособие. Томск: Томск. гос. ун-т.
  13. Уголев А.М. 1987. Естественные технологии биологических систем. Л.: Наука.
  14. Уотсон Дж. 1978. Молекулярная биология гена. М.: Мир.
  15. Хотимченко Ю.С., Деридович И.И., Мотавкин П.А. 1993. Биология размножения и регуляция гаметогенеза и нереста у иглокожих. М.: Наука.
  16. Эволюционная физиология. 1983. Л.: Наука. Ч. 1.
  17. Bing-hui Z., Li-hui A., Chang H. et al. 2014. Evidence for the presence of sex steroid hormones in Zhikong scallop, Chlamys farreri // J. Steroid Biochem. V. 143. P. 199. https://doi.org/10.1016/j.jsbmb.2014.03.002
  18. Cenovic M.G. 1954. Analyse de l´effect stimulant des gonadotrophines de Mammiferes sur la reproduction des daphnies // C. Acad. Sci. Paris. V. 239. P. 363.
  19. Dancasiu M., Istrati F. 1958. Identification of estrogenic hormone in Artemia salina // Studii si cercetari de endocrinology. V. 2. Annl. 1X. P. 18.
  20. Dorfman R., Ungar F. 1965. Metabolism of Steroid Hormones. N.Y.: Acad. Press.
  21. Fodor I., Urbán P., Scott A.P., Pirger Z.A 2020. А critical evaluation of some of the recent so-called ‘evidence’for the involvement of vertebrate-type sex steroids in the reproduction of mollusks // Mol. Cell. Endocrinol. V. 516. P. 110949. https://doi.org/10.1016/j.mce.2020.110949
  22. Fodor I., Pirger Z. 2022. From dark to light-an overview of over 70 years of endocrine disruption research on marine mollusks // Frontiers in Endocrinol. V. 13. P. 903575. https://doi.org/10.3389/fendo.2022.903575
  23. Giulia M.G., Muttenthaler M., Harpsøe K. et al. 2017. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide // Sci. Reports. V. 7. P. 41002. https://doi.org/10.1038/srep41002
  24. Ketata I., Guermazi F., Rebai T. et al. 2007. Variation of steroid concentrations during the reproductive cycle of the clam Ruditapes decussatus: A one year study in the gulf of Gabès area // J. Comp. Biochem. V. 147. P. 424. https://doi.org/10.1016/j.cbpa.2007.01.017
  25. Hartenstein V. 2006. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective // J. Endocrinol. № 190(3). P. 555. https://joe.bioscientifica.com/view/journals/joe/190/3/1900555.xml
  26. Kulkarni A.B., Nagabhushanam R.A., Joshi P.K. 1981. Neuroendocrine regulation of reproductionin the marine female prawn, Parapenaeopsis hardwickii (Miers) // Indian. J. Mar. Sci. V. 10. № 4. P. 350.
  27. Lafont R., Mathieu M. 2007. Steroids in aquatic invertebrates // Ecotoxicology. № 16. P. 109. https://doi.org/10.1007/s10646-006-0113-1
  28. Mellon S., Griffin L. 2002. Neurosteroids: biochemistry and clinical significance // Trends Endocrinol. Metab. V. 13(1). P. 35. https://doi.org/10.1016/s1043-2760(01)00503-3
  29. Mori K. 1968. Effect of steroid on oyster. 1. Activation of respiration in gonad by estradiol-17b // Bull. Japan. Soc. Sci. Fish. V. 34. № 10. P. 915.
  30. Hara S.C.M., Corner E.D.S., Kilvington C.C. 1978. On the nutrition and metabolism of zooplankton XII. Measurements by radioimmunoassay of the levels of a steroid in Calanus // J. Mar. Biol. Assoc. V. 58. № 3. P. 597.
  31. Scott A.P. 2018. Is there any value in measuring vertebrate steroids in invertebrates? // Gen. and Comp. Endocrinol. V. 265. P. 77. https://doi.org/10.1016/j.ygcen.2018.04.005
  32. Takeda N. 1979. Induction of egg-laying by steroid hormones in slugs // Comp. Biochem. and Physiol. V. 62. № 2. P. 273.
  33. Taylor J., McCann K., Ross A. 2020. Binding affinities of oxytocin, vasopressin, and Manning 14 Compound at oxytocin and V1a receptors in Syrian hamster brains // bioRxiv preprint https://doi.org/10.1101/2020.03.18.995894
  34. Teshima S.I., Fleming R., Gaffney J. et al. 1977. Studies on steroid metabolism in echinoderm Asterias rubens // Mar. Natur. Prod. Chem. Nato Conference Ser. V. 1. Boston: Springer. P. 133. https://doi.org/10.1007/978-1-4684-0802-7_11
  35. Thiboutot D., Jabara S., McAllister J.M. et al. 2003. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1) // J. Invest. Dermatol. V. 120(6). P. 905. https://doi.org/10.1046/j.1523-1747.2003.12244.x
  36. Twan W.-H., Wu H.-F., Hwang J.-S. et al. 2005. Corals have already evolved the vertebrate type hormone system in the sexual reproduction // Fish Physiol. and Biochem. V. 31. № 2–3. P. 111. https://doi.org/10.1007/s10695-006-7591-1
  37. Twan W.-H., Hwang J.-S., Lee Y.-H. 2006. Hormones and reproduction in scleractinian corals // Comp. Biochem. and Physiol. Part A. Mol. and Integr. Physiol. V. 144. P. 247. https://doi.org/10.1016/j.cbpa.2006.01.011

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Hydrocortisone concentration (nmol/g of crude mass) in various organs of individual crustacean species (a). 1 – Limulus polyphemus, 2 – Calappa peali, 3 – Pontastacus leptodactylus, 4 – Pacifastacus leniusculus and mollusks (b): 5 – Mya arenaria, 6 – Mytilus galloprovincialis, 7 – Patinopecten yessoensis, 8 – Anodonta cygnea.

Download (122KB)
3. Fig. 2. Concentrations of testosterone (a, b) and estrogens (c, d) in organs and tissues of male cancers Astacus astacus (a, c) and Pacifastacus leniusculus (b, d) at different stages of the line cycle. 1 – early preline D1-3; 2 – late preline D4; 3 – early postline A; 4 – late postline B.

Download (233KB)
4. Fig. 3. Relative change in the mass of the seminal sacs, ejaculatory ducts and the musculoskeletal sac of the great false horse leech with the introduction of hydrocortisone and progesterone. 1 – control, 2 – seminal sac, progesterone administration, 3 – seminal sac, hydrocortisone administration, 4 – ejaculatory channels, progesterone administration, 5 – ejaculatory channels, hydrocortisone administration, 6 – musculoskeletal sac, hydrocortisone administration.

Download (59KB)

Copyright (c) 2024 The Russian Academy of Sciences