RNA Editing by ADAR Adenosine Deaminases in Cell Models of Cag Repeat Expansion Diseases: A Significant Effect of Differentiation from Stem Cells into Brain Organoids in Absence of a Substantial Influence of CAG Repeats on the Level of Editing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but the exact mechanism behind this is not yet fully understood. It is believed that double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to reduced A→I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from patients with Huntington’s disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in specific RNA regions. The differentiation of iPSCs into brain organoids led to an increase in ADAR2 gene expression and a decrease in the expression of RNA editing inhibitor proteins. Consequently, there was an increase in the editing of specific ADAR2 substrates, allowing for the identification of differential substrates of ADAR isoforms. However, a comparison of pathology and control groups did not show differences in editing levels among iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed a significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. In summary, the study found that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.

About the authors

V. V. Kudriavskii

Pirogov Russian National Research Medical University; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Author for correspondence.
Email: wkudriavskii@gmail.com
Russian Federation, 117997 Moscow; 119435 Moscow

A. O. Goncharov

Pirogov Russian National Research Medical University; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 117997 Moscow; 119435 Moscow

A. V. Eremeev

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 119435 Moscow

E. S. Ruchko

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 119435 Moscow

V. A. Veselovsky

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 119435 Moscow

K. M. Klimina

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 119435 Moscow

A. N. Bogomazova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 119435 Moscow

M. A. Lagarkova

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: wkudriavskii@gmail.com
Russian Federation, 119435 Moscow

S. A. Moshkovskii

Pirogov Russian National Research Medical University; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency

Email: moshrffi@gmail.com
Russian Federation, 117997 Moscow; 119435 Moscow

А. А. Kliuchnikova

Pirogov Russian National Research Medical University; Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency; Institute of Biomedical Chemistry

Email: wkudriavskii@gmail.com
Russian Federation, 117997 Moscow; 119435 Moscow; 119121 Moscow

References

  1. Saudou, F., and Humbert, S. (2016) The biology of huntingtin, Neuron, 89, 910-926, https://doi.org/10.1016/j.neuron.2016.02.003.
  2. Bogomazova, A. N., Eremeev, A. V., Pozmogova, G. E., and Lagarkova, M. A. (2019) The role of mutant RNA in the pathogenesis of Huntington’s disease and other polyglutamine diseases, Mol. Biol. (Mosk), 53, 954-967, https://doi.org/10.1134/S0026893319060037.
  3. Walker, F. O. (2007) Huntington’s disease, Lancet, 369, 218-228, https://doi.org/10.1016/S0140-6736(07)60111-1.
  4. Saito, R., Tada, Y., Oikawa, D., Sato, Y., Seto, M., Satoh, A., Kume, K., Ueki, N., Nakashima, M., Hayashi, S., Toyoshima, Y., Tokunaga, F., Kawakami, H., and Kakita, A. (2022) Spinocerebellar ataxia type 17-digenic TBP/STUB1 disease: neuropathologic features of an autopsied patient, Acta Neuropathol. Commun., 10, 177, https://doi.org/10.1186/s40478-022-01486-6.
  5. Cortes, C. J., and La Spada, A. R. (2015) Autophagy in polyglutamine disease: Imposing order on disorder or contributing to the chaos? Mol. Cell. Neurosci., 66, 53-61, https://doi.org/10.1016/j.mcn.2015.03.010.
  6. Adegbuyiro, A., Sedighi, F., Pilkington, A. W., Groover, S., and Legleiter, J. (2017) Proteins containing expanded polyglutamine tracts and neurodegenerative disease, Biochemistry, 56, 1199-1217, https://doi.org/10.1021/acs.biochem.6b00936.
  7. Srivastava, A. K., Takkar, A., Garg, A., and Faruq, M. (2017) Clinical behaviour of spinocerebellar ataxia type 12 and intermediate length abnormal CAG repeats in PPP2R2B, Brain, 140, 27-36, https://doi.org/10.1093/brain/aww269.
  8. Wright, G. E. B., Collins, J. A., Kay, C., McDonald, C., Dolzhenko, E., Xia, Q., Bečanović, K., Drögemöller, B. I., Semaka, A., Nguyen, C. M., Trost, B., Richards, F., Bijlsma, E. K., Squitieri, F., Ross, C. J. D., Scherer, S. W., Eberle, M. A., Yuen, R. K. C., and Hayden, M. R. (2019) Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of huntington disease, Am. J. Hum. Genet., 104, 1116-1126, https://doi.org/10.1016/j.ajhg.2019.04.007.
  9. Li, L.-B., Yu, Z., Teng, X., and Bonini, N. M. (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila, Nature, 453, 1107-1111, https://doi.org/10.1038/nature06909.
  10. Wang, L.-C., Chen, K.-Y., Pan, H., Wu, C.-C., Chen, P.-H., Liao, Y.-T., Li, C., Huang, M.-L., and Hsiao, K.-M. (2011) Muscleblind participates in RNA toxicity of expanded CAG and CUG repeats in Caenorhabditis elegans, Cell. Mol. Life Sci., 68, 1255-1267, https://doi.org/10.1007/s00018-010-0522-4.
  11. Hsu, R.-J., Hsiao, K.-M., Lin, M.-J., Li, C.-Y., Wang, L.-C., Chen, L.-K., and Pan, H. (2011) Long tract of untranslated CAG repeats is deleterious in transgenic mice, PLoS One, 6, e16417, https://doi.org/10.1371/journal.pone.0016417.
  12. Barbon, A., and Barlati, S. (2011) Glutamate receptor RNA editing in health and disease, Biochemistry (Moscow), 76, 882-889, https://doi.org/10.1134/S0006297911080037.
  13. Benne, R., Van den Burg, J., Brakenhoff, J. P., Sloof, P., Van Boom, J. H., and Tromp, M. C. (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA, Cell, 46, 819-826, https://doi.org/10.1016/0092-8674(86)90063-2.
  14. Wolf, P. G., Rowe, C. A., and Hasebe, M. (2004) High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris, Gene, 339, 89-97, https://doi.org/10.1016/j.gene.2004.06.018.
  15. Solomon, O., Oren, S., Safran, M., Deshet-Unger, N., Akiva, P., Jacob-Hirsch, J., Cesarkas, K., Kabesa, R., Amariglio, N., Unger, R., Rechavi, G., and Eyal, E. (2013) Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR), RNA, 19, 591-604, https://doi.org/10.1261/rna.038042.112.
  16. Bass, B. L., and Weintraub, H. (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate, Cell, 55, 1089-1098, https://doi.org/10.1016/0092-8674(88)90253-X.
  17. Thomas, J. M., and Beal, P. A. (2017) How do ADARs bind RNA? New protein-RNA structures illuminate substrate recognition by the RNA editing ADARs, Bioessays, 39, 1600187, https://doi.org/10.1002/bies.201600187
  18. Goncharov, A. O., Shender, V. O., Kuznetsova, K. G., Kliuchnikova, A. A., and Moshkovskii, S. A. (2022) Interplay between A-to-I editing and splicing of RNA: a potential point of application for cancer therapy, Int. J. Mol. Sci., 23, 5240, https://doi.org/10.3390/ijms23095240.
  19. Maurano, M., Snyder, J. M., Connelly, C., Henao-Mejia, J., Sidrauski, C., and Stetson, D. B. (2021) Protein kinase R and the integrated stress response drive immunopathology caused by mutations in the RNA deaminase ADAR1, Immunity, 54, 1948-1960.e5, https://doi.org/10.1016/j.immuni.2021.07.001.
  20. Liddicoat, B. J., Piskol, R., Chalk, A. M., Ramaswami, G., Higuchi, M., Hartner, J. C., Li, J. B., Seeburg, P. H., and Walkley, C. R. (2015) RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself, Science, 349, 1115-1120, https://doi.org/10.1126/science.aac7049.
  21. Behm, M., and Öhman, M. (2016) RNA editing: a contributor to neuronal dynamics in the mammalian brain, Trends Genet., 32, 165-175, https://doi.org/10.1016/j.tig.2015.12.005.
  22. Vissel, B., Royle, G. A., Christie, B. R., Schiffer, H. H., Ghetti, A., Tritto, T., Perez-Otano, I., Radcliffe, R. A., Seamans, J., Sejnowski, T., Wehner, J. M., Collins, A. C., O’Gorman, S., and Heinemann, S. F. (2001) The role of RNA editing of kainate receptors in synaptic plasticity and seizures, Neuron, 29, 217-227, https://doi.org/10.1016/S0896-6273(01)00192-1.
  23. Egebjerg, J., and Heinemann, S. F. (1993) Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6, Proc. Natl. Acad. Sci. USA, 90, 755-759, https://doi.org/10.1073/pnas.90.2.755.
  24. Rice, G. I., Kasher, P. R., Forte, G. M. A., Mannion, N. M., Greenwood, S. M., Szynkiewicz, M., Dickerson, J. E., Bhaskar, S. S., Zampini, M., Briggs, T. A., Jenkinson, E. M., Bacino, C. A., Battini, R., Bertini, E., Brogan, P. A., Brueton, L. A., Carpanelli, M., De Laet, C., de Lonlay, P., del Toro, M., Desguerre, I., Fazzi, E., Garcia-Cazorla, A., Heiberg, A., Kawaguchi, M., Kumar, R., Lin, J.-P. S.-M., Lourenco, C. M., Male, A. M., Marques, W., Mignot, C., Olivieri, I., Orcesi, S., Prabhakar, P., Rasmussen, M., Robinson, R. A., Rozenberg, F., Schmidt, J. L., Steindl, K., Tan, T. Y., van der Merwe, W. G., Vanderver, A., Vassallo, G., Wakeling, E. L., Wassmer, E., Whittaker, E., Livingston, J. H., Lebon, P., Suzuki, T., McLaughlin, P. J., Keegan, L. P., O’Connell, M. A., Lovell, S. C., and Crow, Y. J. (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature, Nat. Genet., 44, 1243-1248, https://doi.org/10.1038/ng.2414.
  25. Livingston, J. H., Lin, J.-P., Dale, R. C., Gill, D., Brogan, P., Munnich, A., Kurian, M. A., Gonzalez-Martinez, V., De Goede, C. G. E. L., Falconer, A., Forte, G., Jenkinson, E. M., Kasher, P. R., Szynkiewicz, M., Rice, G. I., and Crow, Y. J. (2014) A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1, J. Med. Genet., 51, 76-82, https://doi.org/10.1136/jmedgenet-2013-102038.
  26. Huntley, M. A., Lou, M., Goldstein, L. D., Lawrence, M., Dijkgraaf, G. J. P., Kaminker, J. S., and Gentleman, R. (2016) Complex regulation of ADAR-mediated RNA-editing across tissues, BMC Genomics, 17, 61, https://doi.org/10.1186/s12864-015-2291-9.
  27. Tan, M. H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A. N., Liu, K. I., Zhang, R., Ramaswami, G., Ariyoshi, K., Gupte, A., Keegan, L. P., George, C. X., Ramu, A., Huang, N., Pollina, E. A., Leeman, D. S., Rustighi, A., Goh, Y. P. S., GTEx Consortium, Chawla, A., Del Sal, G., Peltz, G., Brunet, A., Conrad, D. F., Samuel, C. E., O’Connell, M. A., Walkley, C. R., Nishikura, K., and Li, J. B. (2017) Dynamic landscape and regulation of RNA editing in mammals, Nature, 550, 249-254, https://doi.org/10.1038/nature24041.
  28. Filippini, A., Bonini, D., Lacoux, C., Pacini, L., Zingariello, M., Sancillo, L., Bosisio, D., Salvi, V., Mingardi, J., La Via, L., Zalfa, F., Bagni, C., and Barbon, A. (2017) Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse, RNA Biol., 14, 1580-1591, https://doi.org/10.1080/15476286.2017.1338232.
  29. Kubota-Sakashita, M., Iwamoto, K., Bundo, M., and Kato, T. (2014) A role of ADAR2 and RNA editing of glutamate receptors in mood disorders and schizophrenia, Mol. Brain, 7, 5, https://doi.org/10.1186/1756-6606-7-5.
  30. Srivastava, P. K., Bagnati, M., Delahaye-Duriez, A., Ko, J.-H., Rotival, M., Langley, S. R., Shkura, K., Mazzuferi, M., Danis, B., van Eyll, J., Foerch, P., Behmoaras, J., Kaminski, R. M., Petretto, E., and Johnson, M. R. (2017) Genome-wide analysis of differential RNA editing in epilepsy, Genome Res., 27, 440-450, https://doi.org/10.1101/gr.210740.116.
  31. Peel, A. L., Rao, R. V., Cottrell, B. A., Hayden, M. R., Ellerby, L. M., and Bredesen, D. E. (2001) Double-stranded RNA-dependent protein kinase, PKR, binds preferentially to Huntington’s disease (HD) transcripts and is activated in HD tissue, Hum. Mol. Genet., 10, 1531-1538, https://doi.org/10.1093/hmg/10.15.1531.
  32. Krol, J., Fiszer, A., Mykowska, A., Sobczak, K., de Mezer, M., and Krzyzosiak, W. J. (2007) Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets, Mol. Cell, 25, 575-586, https://doi.org/10.1016/j.molcel.2007.01.031.
  33. Ota, H., Sakurai, M., Gupta, R., Valente, L., Wulff, B.-E., Ariyoshi, K., Iizasa, H., Davuluri, R. V., and Nishikura, K. (2013) ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing, Cell, 153, 575-589, https://doi.org/10.1016/j.cell.2013.03.024.
  34. Khan, N., Kolimi, N., and Rathinavelan, T. (2015) Twisting right to left: A…A mismatch in a CAG trinucleotide repeat overexpansion provokes left-handed Z-DNA conformation, PLoS Comput. Biol., 11, e1004162, https://doi.org/10.1371/journal.pcbi.1004162.
  35. Echeverria, G. V., and Cooper, T. A. (2012) RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity, Brain Res., 1462, 100-111, https://doi.org/10.1016/j.brainres.2012.02.030.
  36. Donnelly, C. J., Zhang, P.-W., Pham, J. T., Haeusler, A. R., Mistry, N. A., Vidensky, S., Daley, E. L., Poth, E. M., Hoover, B., Fines, D. M., Maragakis, N., Tienari, P. J., Petrucelli, L., Traynor, B. J., Wang, J., Rigo, F., Bennett, C. F., Blackshaw, S., Sattler, R., and Rothstein, J. D. (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention, Neuron, 80, 415-428, https://doi.org/10.1016/j.neuron.2013.10.015.
  37. Mahajan, S. S., and Ziff, E. B. (2007) Novel toxicity of the unedited GluR2 AMPA receptor subunit dependent on surface trafficking and increased Ca2+-permeability, Mol. Cell. Neurosci., 35, 470-481, https://doi.org/10.1016/j.mcn.2007.04.006.
  38. Hideyama, T., Yamashita, T., Suzuki, T., Tsuji, S., Higuchi, M., Seeburg, P. H., Takahashi, R., Misawa, H., and Kwak, S. (2010) Induced loss of ADAR2 engenders slow death of motor neurons from Q/R site-unedited GluR2, J. Neurosci., 30, 11917-11925, https://doi.org/10.1523/JNEUROSCI.2021-10.2010.
  39. Moore, S., Alsop, E., Lorenzini, I., Starr, A., Rabichow, B. E., Mendez, E., Levy, J. L., Burciu, C., Reiman, R., Chew, J., Belzil, V. V., W Dickson, D., Robertson, J., Staats, K. A., Ichida, J. K., Petrucelli, L., Van Keuren-Jensen, K., and Sattler, R. (2019) ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD, Acta Neuropathol., 138, 49-65, https://doi.org/10.1007/s00401-019-01999-w.
  40. Riedmann, E. M., Schopoff, S., Hartner, J. C., and Jantsch, M. F. (2008) Specificity of ADAR-mediated RNA editing in newly identified targets, RNA, 14, 1110-1118, https://doi.org/10.1261/rna.923308.
  41. Herbert, A., and Rich, A. (2001) The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1, Proc. Natl. Acad. Sci. USA, 98, 12132-12137, https://doi.org/10.1073/pnas.211419898.
  42. Franklin, A., Steele, E. J., and Lindley, R. A. (2020) A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases, Heliyon, 6, e03258, https://doi.org/10.1016/j.heliyon.2020.e03258.
  43. Shuvalova, L. D., Davidenko, A. V., Eremeev, A. V., Khomyakova, E. A., Zerkalenkova, E. A., Lebedeva, O. S., Bogomazova, A. N., Klyushnikov, S. A., Illarioshkin, S. N., and Lagarkova, M. A. (2021) Generation of induced pluripotent stem cell line RCPCMi008-A derived from patient with spinocerebellar ataxia 17, Stem Cell Res., 54, 102431, https://doi.org/10.1016/j.scr.2021.102431.
  44. Holmqvist, S., Lehtonen, Š., Chumarina, M., Puttonen, K. A., Azevedo, C., Lebedeva, O., Ruponen, M., Oksanen, M., Djelloul, M., Collin, A., Goldwurm, S., Meyer, M., Lagarkova, M., Kiselev, S., Koistinaho, J., and Roybon, L. (2016) Creation of a library of induced pluripotent stem cells from Parkinsonian patients, NPJ Parkinsons Disease, 2, 16009, https://doi.org/10.1038/npjparkd.2016.9.
  45. Eremeev, A. V., Volovikov, E. A., Shuvalova, L. D., Davidenko, A. V., Khomyakova, E. A., Bogomiakova, M. E., Lebedeva, O. S., Zubkova, O. A., and Lagarkova, M. A. (2019) “Necessity is the mother of invention” or inexpensive, reliable, and reproducible protocol for generating organoids, Biochemistry (Moscow), 84, 321-328, https://doi.org/10.1134/S0006297919030143.
  46. Levitsky, L. I., Kliuchnikova, A. A., Kuznetsova, K. G., Karpov, D. S., Ivanov, M. V., Pyatnitskiy, M. A., Kalinina, O. V., Gorshkov, M. V., and Moshkovskii, S. A. (2019) Adenosine-to-inosine RNA editing in mouse and human brain proteomes, Proteomics, 19, e1900195, https://doi.org/10.1002/pmic.201900195.
  47. Levitsky, L. I., Ivanov, M. V., Goncharov, A. O., Kliuchnikova, A. A., Bubis, J. A., Lobas, A. A., Solovyeva, E. M., Pyatnitskiy, M. A., Ovchinnikov, R. K., Kukharsky, M. S., Farafonova, T. E., Novikova, S. E., Zgoda, V. G., Tarasova, I. A., Gorshkov, M. V., and Moshkovskii, S. A. (2023) Massive proteogenomic reanalysis of publicly available proteomic datasets of human tissues in search for protein recoding via adenosine-to-inosine RNA editing, J. Proteome Res., 22, 1695-1711, https://doi.org/10.1021/acs.jproteome.2c00740.
  48. Nikitina, A. S., Lipatova, A. V., Goncharov, A. O., Kliuchnikova, A. A., Pyatnitskiy, M. A., Kuznetsova, K. G., Hamad, A., Vorobyev, P. O., Alekseeva, O. N., Mahmoud, M., Shakiba, Y., Anufrieva, K. S., Arapidi, G. P., Ivanov, M. V., Tarasova, I. A., Gorshkov, M. V., Chumakov, P. M., and Moshkovskii, S. A. (2022) Multiomic profiling identified EGF receptor signaling as a potential inhibitor of type I interferon response in models of oncolytic therapy by vesicular stomatitis virus, Int. J. Mol. Sci., 23, 5244, https://doi.org/10.3390/ijms23095244.
  49. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., and Madden, T. L. (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction, BMC Bioinformatics, 13, 134, https://doi.org/10.1186/1471-2105-13-134.
  50. O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., Ako-Adjei, D., Astashyn, A., Badretdin, A., Bao, Y., Blinkova, O., Brover, V., Chetvernin, V., Choi, J., Cox, E., Ermolaeva, O., Farrell, C. M., Goldfarb, T., Gupta, T., Haft, D., Hatcher, E., Hlavina, W., Joardar, V. S., Kodali, V. K., Li, W., Maglott, D., Masterson, P., McGarvey, K. M., Murphy, M. R., O’Neill, K., Pujar, S., Rangwala, S. H., Rausch, D., Riddick, L. D., Schoch, C., Shkeda, A., Storz, S. S., Sun, H., Thibaud-Nissen, F., Tolstoy, I., Tully, R. E., Vatsan, A. R., Wallin, C., Webb, D., Wu, W., Landrum, M. J., Kimchi, A., Tatusova, T., DiCuccio, M., Kitts, P., Murphy, T. D., and Pruitt, K. D. (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res., 44, D733-D745, https://doi.org/10.1093/nar/gkv1189.
  51. Owczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., and Peek, A. S. (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers, Nucleic Acids Res., 36, W163-W169, https://doi.org/10.1093/nar/gkn198.
  52. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor, Bioinformatics, 34, i884-i890, https://doi.org/10.1093/bioinformatics/bty560.
  53. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner, Bioinformatics, 29, 15-21, https://doi.org/10.1093/bioinformatics/bts635.
  54. Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., and Li, H. (2021) Twelve years of SAMtools and BCFtools, Gigascience, 10, giab008, https://doi.org/10.1093/gigascience/giab008.
  55. Picardi, E., and Pesole, G. (2013) REDItools: high-throughput RNA editing detection made easy, Bioinformatics, 29, 1813-1814, https://doi.org/10.1093/bioinformatics/btt287.
  56. Picardi, E., D’Erchia, A. M., Lo Giudice, C., and Pesole, G. (2017) REDIportal: a comprehensive database of A-to-I RNA editing events in humans, Nucleic Acids Res., 45, D750-D757, https://doi.org/10.1093/nar/gkw767.
  57. Tran, S. S., Zhou, Q., and Xiao, X. (2020) Statistical inference of differential RNA-editing sites from RNA-sequencing data by hierarchical modeling, Bioinformatics, 36, 2796-2804, https://doi.org/10.1093/bioinformatics/btaa066.
  58. Bahn, J. H., Lee, J.-H., Li, G., Greer, C., Peng, G., and Xiao, X. (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing, Genome Res., 22, 142-150, https://doi.org/10.1101/gr.124107.111.
  59. Morabito, M. V., Ulbricht, R. J., O’Neil, R. T., Airey, D. C., Lu, P., Zhang, B., Wang, L., and Emeson, R. B. (2010) High-throughput multiplexed transcript analysis yields enhanced resolution of 5-hydroxytryptamine 2C receptor mRNA editing profiles, Mol. Pharmacol., 77, 895-902, https://doi.org/10.1124/mol.109.061903.
  60. Shanmugam, R., Zhang, F., Srinivasan, H., Charles Richard, J. L., Liu, K. I., Zhang, X., Woo, C. W. A., Chua, Z. H. M., Buschdorf, J. P., Meaney, M. J., and Tan, M. H. (2018) SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates, Nucleic Acids Res., 46, 7379-7395, https://doi.org/10.1093/nar/gky615.
  61. Mehta, S. R., Tom, C. M., Wang, Y., Bresee, C., Rushton, D., Mathkar, P. P., Tang, J., and Mattis, V. B. (2018) Human Huntington’s disease iPSC-derived cortical neurons display altered transcriptomics, morphology, and maturation, Cell Rep., 25, 1081-1096.e6, https://doi.org/10.1016/j.celrep.2018.09.076.
  62. Tian, B., White, R. J., Xia, T., Welle, S., Turner, D. H., Mathews, M. B., and Thornton, C. A. (2000) Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR, RNA, 6, 79-87, https://doi.org/10.1017/S1355838200991544.
  63. Mykowska, A., Sobczak, K., Wojciechowska, M., Kozlowski, P., and Krzyzosiak, W. J. (2011) CAG repeats mimic CUG repeats in the misregulation of alternative splicing, Nucleic Acids Res., 39, 8938-8951, https://doi.org/10.1093/nar/gkr608.
  64. Bowling, E. A., Wang, J. H., Gong, F., Wu, W., Neill, N. J., Kim, I. S., Tyagi, S., Orellana, M., Kurley, S. J., Dominguez-Vidaña, R., Chung, H.-C., Hsu, T. Y.-T., Dubrulle, J., Saltzman, A. B., Li, H., Meena, J. K., Canlas, G. M., Chamakuri, S., Singh, S., Simon, L. M., Olson, C. M., Dobrolecki, L. E., Lewis, M. T., Zhang, B., Golding, I., Rosen, J. M., Young, D. W., Malovannaya, A., Stossi, F., Miles, G., Ellis, M. J., Yu, L., Buonamici, S., Lin, C. Y., Karlin, K. L., Zhang, X. H.-F., and Westbrook, T. F. (2021) Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer, Cell, 184, 384-403.e21, https://doi.org/10.1016/j.cell.2020.12.031.
  65. Germanguz, I., Shtrichman, R., Osenberg, S., Ziskind, A., Novak, A., Domev, H., Laevsky, I., Jacob-Hirsch, J., Feiler, Y., Rechavi, G., and Itskovitz-Eldor, J. (2014) ADAR1 is involved in the regulation of reprogramming human fibroblasts to induced pluripotent stem cells, Stem Cells Dev., 23, 443-456, https://doi.org/10.1089/ scd.2013.0206.
  66. Cuddleston, W. H., Li, J., Fan, X., Kozenkov, A., Lalli, M., Khalique, S., Dracheva, S., Mukamel, E. A., and Breen, M. S. (2022) Cellular and genetic drivers of RNA editing variation in the human brain, Nat. Commun., 13, 2997, https://doi.org/10.1038/s41467-022-30531-0.
  67. Sledziowska, M., Winczura, K., Jones, M., Almaghrabi, R., Mischo, H., Hebenstreit, D., Garcia, P., and Grzechnik, P. (2023) Non-coding RNAs associated with Prader–Willi syndrome regulate transcription of neurodevelopmental genes in human induced pluripotent stem cells, Hum. Mol. Genet., 32, 608-620, https://doi.org/10.1093/hmg/ddac228.
  68. Zhang, L.-M., Wang, M.-H., Yang, H.-C., Tian, T., Sun, G.-F., Ji, Y.-F., Hu, W.-T., Liu, X., Wang, J.-P., and Lu, H. (2019) Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/ α-synuclein pathway, Aging (Albany NY), 11, 9264-9279, https://doi.org/10.18632/aging.102330.
  69. Ansell, B. R. E., Thomas, S. N., Bonelli, R., Munro, J. E., Freytag, S., and Bahlo, M. (2021) A survey of RNA editing at single-cell resolution links interneurons to schizophrenia and autism, RNA, 27, 1482-1496, https://doi.org/10.1261/rna.078804.121.
  70. Vitali, P., Basyuk, E., Le Meur, E., Bertrand, E., Muscatelli, F., Cavaillé, J., and Huttenhofer, A. (2005) ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs, J. Cell Biol., 169, 745-753, https://doi.org/10.1083/jcb.200411129.
  71. Galeano, F., Leroy, A., Rossetti, C., Gromova, I., Gautier, P., Keegan, L. P., Massimi, L., Di Rocco, C., O’Connell, M. A., and Gallo, A. (2010) Human BLCAP transcript: new editing events in normal and cancerous tissues, Int. J. Cancer, 127, 127-137, https://doi.org/10.1002/ijc.25022.
  72. Puchalski, R. B., Louis, J. C., Brose, N., Traynelis, S. F., Egebjerg, J., Kukekov, V., Wenthold, R. J., Rogers, S. W., Lin, F., and Moran, T. (1994) Selective RNA editing and subunit assembly of native glutamate receptors, Neuron, 13, 131-147, https://doi.org/10.1016/0896-6273(94)90464-2.
  73. Akbarian, S., Smith, M. A., and Jones, E. G. (1995) Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia, Brain Res., 699, 297-304, https://doi.org/10.1016/0006-8993(95)00922-D.
  74. Hideyama, T., Yamashita, T., Aizawa, H., Tsuji, S., Kakita, A., Takahashi, H., and Kwak, S. (2012) Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons, Neurobiol. Dis., 45, 1121-1128, https://doi.org/10.1016/j.nbd.2011.12.033.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix to the article
Download (2MB)

Copyright (c) 2024 Russian Academy of Sciences