High-frequency pulsed power supply of LEDs as a way to increase collections of night-flying insects with light traps using diamondback moth, Plutella xylostella (L.) (Lepidoptera, Plutellidae) as an example

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Traps equipped with low-power LEDs are very promising for use in insect pest control due to their safety for the non-target entomofauna. However, the level of natural illumination at night at high latitudes varies greatly and the attractiveness of low-power LEDs in early summer (i. e. during the period of white nights) becomes too weak to ensure acceptable catch of harmful insects in traps. The purpose of this article is to illustrate a successful attempt, using the example of the diamondback moth, Plutella xylostella (L.), to enhance the attractive effect of low-power LEDs by replacing their direct current supply with a high-frequency pulsed (30 kHz) power supply. Diamondback moth adults were collected in the vicinity of St. Petersburg in 2020–2024 using Delta plastic traps equipped with LEDs and a synthetic sex attractant as a control. The results obtained proved that upgrade of LEDs power supply provides significant increase in diamondback moth adult catch by light traps, exactly 4.57 times during the period of white nights, 3.11 times during the dark nights following them, and 4.45 times during the summer as a whole. The results achieved are important not only from a practical point of view, but also have theoretical value, since the effect of flickering light on insect behaviour has been very insufficiently studied.

Full Text

Restricted Access

About the authors

Yu. А. Zakharova

Всероссийский научно-исследовательский институт защиты растений

Email: julia_fefelova@mail.ru
Russian Federation, 196608, С.-Петербург, Пушкин, шоссе Подбельского, 3

А. А. Miltsen

Всероссийский научно-исследовательский институт защиты растений

Email: miltsen@yandex.ru
Russian Federation, 196608, С.-Петербург, Пушкин, шоссе Подбельского, 3

А. N. Frolov

Всероссийский научно-исследовательский институт защиты растений

Author for correspondence.
Email: entomology@vizr.spb.ru
Russian Federation, 196608, С.-Петербург, Пушкин, шоссе Подбельского, 3

References

  1. Андреева И. В., Ашмарина Л. Ф., Шаталова Е. И. 2019. Особенности изменения фитосанитарного состояния кормовых культур в условиях Западной Сибири. Достижения науки и техники АПК 33 (10): 26–30. https://doi.org/10.24411/0235-2451-2019-11006
  2. Андреева И. В., Шаталова Е. И. 2017. Сезонное развитие капустной моли и ее энтомофагов в Западной Сибири. Сибирский вестник сельскохозяйственной науки 47 (3): 42–48.
  3. Андреева И. В., Шаталова Е. И., Ходакова А. В. 2021. Капустная моль Plutella xylostella: эколого-биологические аспекты, вредоносность, контроль численности. Вестник защиты растений 104 (1): 28–39. https://doi.org/10.31993/2308-6459-2021-104-1-14947
  4. Бобрешова И. Ю., Рябчинская Т. А., Стулов С. В., Пятнова Ю. Б., Каракотов С. Д. 2020. Метод феромониторинга капустной моли (Plutella xylostella L.) — опасного вредителя рапса. Агрохимия 7: 68–75. https://doi.org/10.31857/S0002188120050038
  5. Воронцов-Вельяминов Б. А. 1980. Очерки о Вселенной, 8-е издание, переработанное. М.: Наука, 672 с.
  6. Гладкий Ю. Н. 2011. Россия: «антилиберальная» природа против либеральной экономики. Общество. Среда. Развитие 2 (19): 201–207.
  7. Глупов В. В. 2013. С точки зрения насекомого. Наука из первых рук 2 (50): 96–109.
  8. Грушевая И. В., Конончук А. Г., Малыш С. М., Мильцын А. А., Фролов А. Н. 2019. Светодиодная ловушка для мониторинга кукурузного мотылька Ostrinia nubilalis: результаты испытания в Краснодарском крае. Вестник защиты растений 102 (4): 49–54. https://doi.org/10.31993/2308-6459-2019-4-102-49-54
  9. Жуковская М. И., Северина И. Ю., Новикова Е. С. 2022. Световое антропогенное загрязнение: действие на насекомых. Биосфера 14 (2): 126–136. https://doi.org/10.24855/biosfera.v14i2.669
  10. Захарова Ю. А., Мильцын А. А., Фролов А. Н. 2023. Светодиодная ловушка для отлова насекомых с импульсным электропитанием. Патент на полезную модель RU220753 U1, 02.10.2023. Заявка № 2023119972 от 28.07.2023.
  11. Захарова Ю. А., Фролов А. Н., Артемьева А. М. 2022. Мониторинг капустной моли (Plutella xylostella L.) на коллекции капусты в окрестностях Санкт-Петербурга. Труды по прикладной ботанике, генетике и селекции 183 (4): 219–228. https://doi.org/10.30901/2227-8834-2022-4-219-228
  12. Мазохин-Поршняков Г. А. 1960. Почему насекомые летят на свет. Энтомологическое обозрение 39 (1): 52–58.
  13. Макарова О. Л., Свиридов А. В., Клепиков М. А. 2012. Чешуекрылые (Lepidoptera) полярных пустынь. Зоологический журнал 91 (9): 1043–1057.
  14. Мильцын А. А., Грушевая И. В., Конончук И. В., Малыш Ю. М., Токарев Ю. С., Фролов А. Н. 2020. Световая ловушка для мониторинга насекомых. Патент на полезную модель RU195732 U1, 04.02.2020. Заявка № 2019131861 от 09.10.2019.
  15. Овсянникова Е. И., Гричанов И. Я., Саулич М. И. 2008. Ареал и зоны вредоносности капустной моли (Plutella xylostella L.). В сб.: А. Н. Афонин, С. Л. Грин, Н. И. Дзюбенко, А. Н. Фролов (ред.). Агроэкологический атлас России и сопредельных стран: экономически значимые растения, их вредители, болезни и сорные растения [Интернет-версия 2.0]. [URL: https://agroatlas.ru/ru/content/pests/Plutella_maculipennis/map/index.html]
  16. Перельман Я. И. 2016. Занимательная астрономия. СПб.: Издательство СЗКЭО, 224 с.
  17. Портал радиоэлектроники 2025. Расчет и подбор сопротивления токоограничивающего резистора для светодиода. [URL: https://interlavka.su/articles/raschet-i-podbor-soprotivleniya-tokoogranichivayuschego-rezistora-dlya-svetodioda] (дата обращения 28.03.2025).
  18. Розенберг Г. В. 1963. Сумерки. Μ.: Физматгиз, 380 с.
  19. Семеренко С. А., Бушнева Н. А. 2018. Применение феромонных ловушек на яровом рапсе для учета численности капустной моли. Масличные культуры 4: 172–177.
  20. Тимофеев Ю. М., Васильев А. В. 2003. Теоретические основы атмосферной оптики. СПб.: Наука, 474 с.
  21. Форум 4PDA [Интернет-документ]. 2025. Смартфон — болят глаза. Помогите с выбором. Выбор смартфона с комфортным экраном. [URL: https://4pda.to/forum/index.php?showtopic=943228&st=16120] (дата обращения 28.03.2025).
  22. Фролов А. Н. 2022. Управление поведением вредных насекомых: световые, химические сигналы и их совместное действие. Энтомологическое обозрение 101 (3): 453–502. https://doi.org/10.31857/S0367144522030017
  23. Фролов А. Н., Грушевая И. В., Конончук А. Г. 2021. Современные типы ловушек для мониторинга чешуекрылых на примере кукурузного мотылька. Монография. СПб.: Наукоемкие технологии, 120 с.
  24. Фролов А. Н., Захарова Ю. А., Малыш С. М. 2024. Сквозь сумерки к свету: новый взгляд на вариативность поведенческих реакций яблонной плодожорки. Вестник защиты растений 107 (2): 40–74. https://doi.org/10.31993/2308-6459-2024-107-2-16612
  25. Чернышев В. Б. 1996. Экология насекомых. М.: МГУ, 304 с.
  26. Черятьева М. И., Ходаков П. Е. 2022. Использование феромонных ловушек для контроля численности бабочек капустной моли. В кн.: О. С. Харалгина (ред.). Достижения аграрной науки для обеспечения продовольственной безопасности Российской Федерации. Сборник трудов II Международной научно-практической конференции молодых ученых и специалистов. Тюмень: Государственный агроуниверситет Северного Зауралья, с. 197–202.
  27. Шпанев А. М. 2021. Новые случаи массового размножения капустной моли. Защита и карантин растений 4: 27–30. https://doi.org/10.47528/1026-8634_2021_4_27
  28. Шпанев А. М. 2023. Особенности развития и вредоносность капустной моли (Plutella xylostella (L.); Lepidoptera, Plutellidae) на посевах ярового рапса в Ленинградской области. Энтомологическое обозрение 102 (2): 231–240. https://doi.org/10.31857/S036714452302003X
  29. Agee H. R. 1971. Flicker fusion frequency of the compound eye of Heliothis zea (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 64 (4): 942–945. https://doi.org/10.1093/aesa/64.4.942
  30. Agelopoulos N., Birkett M. A., Hick A. J., Hooper A. M., Pickett J. A., Pow E. M., Smart L. E., Smiley D. W. M., Wadhams L. J., Woodcock C. M. 1999. Exploiting semiochemicals in insect control. Pesticide Science 55 (3): 225–235. https://doi.org/10.1002/(SICI)1096-9063(199903)55:3%3C225 ::AID-PS887%3E3.0.CO;2-7
  31. Ahirwar M. K., Vaishampayan S., Vishwakarma D., Tiwari H. 2023. Comparative analysis of UV and UVLED light traps for pest control: a cost-efficiency perspective. International Journal of Plant & Soil Science 35 (22): 923–934. https://doi.org/10.9734/IJPSS/2023/v35i224203
  32. Ahrens C. D., Henson R. 2019. Meteorology Today: An Introduction to Weather, Climate, and the Environment, 12th Edition. Boston: Cengage Learning, 656 p.
  33. Baker A., Cosens D. 1983. Flicker-response enhancement in ‘fast-eyed’ insects. Journal of Insect Physiology 29 (2): 177–186. https://doi.org/10.1016/0022-1910(83)90142-7
  34. Baker P. B., Shelton A. M., Andaloro J. T. 1982. Monitoring of diamondback moth (Lepidoptera: Yponomeutidae) in cabbage with pheromones. Journal of Economic Entomology 75 (6): 1025–1028. https://doi.org/10.1093/jee/75.6.1025
  35. Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae 235: 437–451. https://doi.org/10.1016/j.scienta.2018.02.058
  36. Barroso A., Haifig I., Janei V., Da Silva I., Dietrich C., Costa-Leonardo A. M. 2017. Effects of flickering light on the attraction of nocturnal insects. Lighting Research & Technology 49 (1): 100–110. https://doi.org/10.1177/1477153515602143
  37. Bessho M., Shimizu K. 2012. Latest trends in LED lighting. Electronics and Communications in Japan 95 (1): 1–7. https://doi.org/10.1002/ecj.10394
  38. Blüthgen N., Dicks L. V., Forister M. L., Outhwaite C. L., Slade E. M. 2023. Insect declines in the Anthropocene. Nature Reviews Earth & Environment 4 (10): 683–686. https://doi.org/10.1038/s43017-023-00478-x
  39. Boström J. E., Dimitrova M., Canton C., Håstad O., Qvarnström A., Ödeen A. 2016. Ultra-rapid vision in birds. PloS One 11 (3): e0151099. https://doi.org/10.1371/journal.pone.0151099
  40. Bourget C. M. 2008. An introduction to light-emitting diodes. HortScience 43 (7): 1944–1946. https://doi.org/10.21273/HORTSCI.43.7.1944
  41. Bowden J. 1982. An analysis of factors affecting catches of insects in light-traps. Bulletin of Entomological Research 72 (4): 535–556. https://doi.org/10.1017/S0007485300008579
  42. Bowden J. 1984. Latitudinal and seasonal changes of nocturnal illumination with a hypothesis about their effect on catches of insects in light-traps. Bulletin of Entomological Research 74 (2): 279–298. https://doi.org/10.1017/S0007485300011408
  43. Boyes D. H., Evans D. M., Fox R., Parsons M. S., Pocock M. J. 2021. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conservation and Diversity 14 (2): 167–187. https://doi.org/10.1111/icad.12447
  44. Brady D., Saviane A., Cappellozza S., Sandrelli F. 2021. The circadian clock in Lepidoptera. Frontiers in Physiology 12: 776826. https://doi.org/10.3389/fphys.2021.776826
  45. Brehm G. 2017. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterologica 40 (1): 87–108. https://doi.org/10.3897/nl.40.11887
  46. Briscoe A. D., Chittka L. 2001. The evolution of color vision in insects. Annual Review of Entomology 46 (1): 471–510. https://doi.org/10.1146/annurev.ento.46.1.471
  47. Brundrett G. W. 1974. Human sensitivity to flicker. Lighting Research & Technology 6 (3): 127–143. https://doi.org/10.1177/096032717400600302
  48. Bugbee B. 2017. Economics of LED lighting. In: S. D. Gupta (ed.). Light Emitting Diodes for Agriculture: Smart Lighting. Singapore: Springer Nature, p. 81–99. https://doi.org/10.1007/978-981-10-5807-3_5
  49. Chen Y. X., Tian H. J., Wei H., Zhan Z. X., Huang Y. Q. 2011. A simple method for identifying sex of Plutella xylostella (Linnaeus) larva, pupa and adult. Fujian Journal of Agricultural Sciences 26 (4): 611–614.
  50. Chi D. T., Le Thi H., Le V. V., Thy T. T., Yamamoto M., Ando T. 2024. Mass trapping of the diamondback moth (Plutella xylostella L.) by a combination of its sex pheromone and allyl isothiocyanate in cabbage fields in southern Vietnam. Journal of Pesticide Science 49 (1): 15–21. https://doi.org/10.1584/jpestics.D23-042
  51. Clark D. A., Demb J. B. 2016. Parallel computations in insect and mammalian visual motion processing. Current Biology 26 (20): R1062–R1072. https://doi.org/10.1016/j.cub.2016.08.003
  52. Cohnstaedt L. W., Gillen J. I., Munstermann L. E. 2008. Light-emitting diode technology improves insect trapping. Journal of the American Mosquito Control Association 24 (2): 331–334. https://doi.org/10.2987%2F5619.1
  53. Coulson S. J., Hodkinson I. D., Webb N. R., Mikkola K., Harrison J. A., Pedgley D. E. 2002. Aerial colonization of high Arctic islands by invertebrates: the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) as a potential indicator species. Diversity and Distributions 8 (6): 327–334. https://doi.org/10.1046/j.1472-4642.2002.00157.x
  54. Couty A., Van Emden H., Perry J. N., Hardie J., Pickett J. A., Wadhams L. J. 2006. The roles of olfaction and vision in host‐plant finding by the diamondback moth, Plutella xylostella. Physiological Entomology 31 (2): 134–145. https://doi.org/10.1111/j.1365-3032.2006.00499.x
  55. Crozier W. J., Wolf E., Zerrahn-Wolf G. 1937a. Critical illumination and critical frequency for response to flickered light, in dragonfly larvae. Journal of General Physiology 20 (3): 363–392. https://doi.org/10.1085/jgp.20.3.363
  56. Crozier W. J., Wolf E., Zerrahn-Wolf G. 1937b. Intensity and critical frequency for visual flicker. Journal of General Physiology 21 (2): 203–221. https://doi.org/10.1085/jgp.21.2.203
  57. Davidson P. 2015. The Last of the Light about Twilight. London: Reaktion Books Ltd, 208 p.
  58. Davis J., Hsieh Y. H., Lee H. C. 2015. Humans perceive flicker artifacts at 500 Hz. Scientific Reports 5 (1): 7861. https://doi.org/10.1038/srep07861
  59. De Causmaecker L., Mentens A., Aerts S., Vanschoenwinkel B., Moortgat R., Van Den Bossche P., Jacobs V. A. 2022. Development of a control system to evaluate the impact of artificial light modulation on insects. In: Proceedings of the CIE Symposium on Advances on the Measurement of Temporal Light Modulation. Commission Internationale de L'Eclairage (CIE), p. 31–39. https://doi.org/10.25039/x49.2022.P07
  60. De Causmaecker L., Mentens A., Segers L., Van Den Bossche P., Vanschoenwinkel B., Jacobs V. A. 2023. Towards public LED lighting with minimal impact on insect movement. In: Proceedings of the 30th CIE SESSION. Vienna: Commission Internationale de L'Eclairage (CIE), p. 291–300. https://doi.org/10.25039/x50.2023.OP044
  61. Dent D., Binks R. H. 2020. Insect Pest Management, 3rd Edition. Oxfordshire, UK; Boston, USA: CAB International, 408 p.
  62. Di Lollo V., Hogben J. H. 1985. Suppression of visible persistence. Journal of Experimental Psychology: Human Perception and Performance 11 (3): 304–316. https://doi.org/10.1037/0096-1523.11.3.304
  63. Di Lollo V., Hogben J. H. 1987. Suppression of visible persistence as a function of spatial separation between inducing stimuli. Perception & Psychophysics 41: 345–354. https://doi.org/10.3758/BF03208236
  64. Donner K. 2021. Temporal vision: measures, mechanisms and meaning. Journal of Experimental Biology 224 (15): jeb222679. https://doi.org/10.1242/jeb.222679
  65. Evenden M. L., Gries R. 2010. Assessment of commercially available pheromone lures for monitoring diamondback moth (Lepidoptera: Plutellidae) in canola. Journal of Economic Entomology 103 (3): 654–661. https://doi.org/10.1603/EC09339
  66. Fathipour Y., Mirhosseini M. A. 2017. Diamondback moth (Plutella xylostella) management. In: G. V. P. Reddy (ed.). Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops. Oxfordshire (UK), Boston (USA): CAB International, p. 13–43. https://doi.org/10.1079/9781780648200.0013
  67. Forister M. L., Pelton E. M., Black S. H. 2019. Declines in insect abundance and diversity: we know enough to act now. Conservation Science and Practice 1 (8): e80. https://doi.org/10.1111/csp2.80
  68. Foster S. P., Harris M. O. 1997. Behavioral manipulation methods for insect pest management. Annual Review of Entomology 42: 123–146. https://doi.org/10.1146/annurev.ento.42.1.123
  69. Furlong M. J., Pell J. K., Choo O. P., Rahman S. A. 1995. Field and laboratory evaluation of a sex pheromone trap for the autodissemination of the fungal entomopathogen Zoophthora radicans (Entomophthorales) by the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Bulletin of Entomological Research 85 (3): 331–337. https://doi.org/10.1017/S0007485300036051
  70. Furlong M. J., Wright D. J., Dosdall L. M. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology 58: 517–541. https://doi.org/10.1146/annurev-ento-120811-153605
  71. Galimov V. [Интернет-документ]. 2020. White nights in St. Petersburg. Itmo/News. [URL: https://news.itmo.ru/en/features/experience_saint_petersburg/news/9447] (22 May 2020).
  72. Gonzalez F., Rodríguez C., Oehlschlager C. 2023. Economic benefits from the use of mass trapping in the management of diamondback moth, Plutella xylostella, in Central America. Insects 14 (2): 149. https://doi.org/10.3390/insects14020149
  73. Goodwin S., Danthanarayana W. 1984. Flight activity of Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Australian Journal of Entomology 23 (3): 235–240. https://doi.org/10.1111/j.1440-6055.1984.tb01952.x
  74. Graf R. F., Sheets W. 1996. Encyclopedia of Electronic Circuits, Vol. 6. New York et al.: McGraw-Hill, ‎789 p.
  75. Gross J., Franco J. C. 2022. Novel trends on semiochemicals and semiophysicals for insect science and management. Entomologia Generalis 42 (2): 163–165. https://doi.org/10.1127/entomologia/2022/1535
  76. Hallett R. H., Angerilli N. P. D., Borden J. H. 1995. Potential for a sticky trap monitoring system for the diamondback moth (Lepidoptera: Yponomeutidae) on cabbages in Indonesia. International Journal of Pest Management 41 (4): 205–207. https://doi.org/10.1080/09670879509371950
  77. Hänel A., Posch T., Ribas S. J., Aubé M., Duriscoe D., Jechow A., Kollath Z., Lolkema D. E., Moore C., Schmidt N., Spoelstra H., Wuchterl G., Kyba C. C. 2018. Measuring night sky brightness: methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer 205: 278–290. https://doi.org/10.1016/j.jqsrt.2017.09.008
  78. Harcourt D. G. 1957. Biology of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae), in Eastern Ontario. II. Life-history, behaviour, and host relationships. The Canadian Entomologist 89 (12): 554–564. https://doi.org/10.4039/Ent89554-12
  79. He X. D., Chen W., Liu T. X. 2003. Attraction of diamondback moth to three commercial sex pheromone lures under laboratory and field conditions. Southwestern Entomologist 28 (2): 105–114.
  80. Herms W. B., Ellsworth J. K. 1934. Field tests of the efficacy of colored light in trapping insect pests. Journal of Economic Entomology 27 (5): 1055–1067. https://doi.org/10.1093/jee/27.5.1055
  81. Infusino M., Brehm G., Di Marco C., Scalercio S. 2017. Assessing the efficiency of UV LEDs as light sources for sampling the diversity of macro-moths (Lepidoptera). European Journal of Entomology 114: 25–33. https://doi.org/10.14411/eje.2017.004
  82. Inger R., Bennie J., Davies T., Gaston K. 2014. Potential biological and ecological effects of flickering artificial light. PloS One 9 (5): e98631. https://doi.org/10.1371/journal.pone.0098631
  83. Jander R. 1963. Insect orientation. Annual Review of Entomology 8: 95–114. https://doi.org/10.1146/annurev.en.08.010163.000523
  84. Jägerbrand A. K. 2018. LED-belysningens Effekter på Djur och Natur Med Rekommendationer: Fokus på Nordiska Förhållanden och Känsliga Arter och Grupper. Linköping: Calluna AB, 121 p.
  85. Justus K. A., Mitchell B. K. 1999. Reproductive morphology, copulation, and inter-populational variation in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). International Journal of Insect Morphology and Embryology 28 (3): 233–246. https://doi.org/10.1016/S0020-7322(99)00027-6
  86. Kammar V., Rani A. T., Kumar K. P., Chakravarthy A. K. 2020. Light trap: a dynamic tool for data analysis, documenting, and monitoring insect populations and diversity. In: A. K. Chakravarthy (ed.). Innovative Pest Management Approaches for the 21st Century: Harnessing Automated Unmanned Technologies. Singapore: Springer Nature Singapore, p. 137–163. https://doi.org/10.1007/978-981-15-0794-6_8
  87. Kanervo V. 1936. Kaalikoi (Plutella maculipennis Curt.) ristikukkaiskasvien tuholaisena Suomessa. Valtion Maatalouskoetoiminnan Julkaisuja 86: 1–86.
  88. Kim K. N., Huang Q. Y., Lei C. L. 2019. Advances in insect phototaxis and application to pest management: a review. Pest Management Science 75 (12): 3135–3143. https://doi.org/10.1002/ps.5536
  89. Kim M. 2021. Assessment of the effect on the human body of the flicker of OLED displays of smartphones. Journal of Information Display 22 (4): 269–274. https://doi.org/10.1080/15980316.2021.1950854
  90. Kondratyev K. Y. 1969. Radiation in the Atmosphere. International Geophysics Series, vol. 12. New York, London: Academic Press, 929 p.
  91. Kristensen N. P., Scoble M. J., Karsholt O. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668 (1): 699–747. https://doi.org/10.11646/zootaxa.1668.1.30
  92. Kurgansky A. M. 2024. Pulse-width modulation as a new hygienic factor determining the visual comfort of modern screens. Russian Bulletin of Hygiene 1: 48–53. https://doi.org/10.24075/rbh.2024.093
  93. Kuwahara M., Keinmeesuke P., Shirai Y. 1996. Monitoring field populations with pheromone trap and seasonal trend of adult body size of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), in Central Thailand. Japan International Research Center for Agricultural Sciences Journal 3: 17–22.
  94. Lafitte A., Sordello R., Legrand M., Nicolas V., Obein G., Reyjol Y. 2022. A flashing light may not be that flashy: a systematic review on critical fusion frequencies. PLoS One 17 (12): e0279718.
  95. https://doi.org/10.1371/journal.pone.0279718
  96. Lafitte A., Sordello R., Legrand M., Nicolas V., Obein G., Reyjol Y. 2023. Does a flashing artificial light have more or conversely less impacts on animals than a continuous one? A systematic review. Nature Conservation 54: 149–177. https://doi.org/10.3897/natureconservation.54.102614
  97. Landis C. 1954. Determinants of the critical flicker-fusion threshold. Physiological Reviews 34 (2): 259–286. https://doi.org/10.1152/physrev.1954.34.2.259
  98. Leinert C., Bowyer S., Haikala L. K., Hanner M. S., Hauser M. G., Levasseur-Regourd A. C., Mann I., Mattila K., Reach W. T., Schlosser W., Staude H. J., Toller G. N., Weiland J. L., Weinberg J. L., Witt A. N. 1998. The 1997 reference of diffuse night sky brightness. Astronomy and Astrophysics Supplement Series 127 (1): 1–99.
  99. Leinonen R., Söderman G., Itämies J., Rytkönen S., Rutanen I. 1998. Intercalibration of different light-traps and bulbs used in moth monitoring in northern Europe. Entomologica Fennica 9 (1): 37–51. https://doi.org/10.33338/ef.83965
  100. Lewis T., Taylor L. R. 1965. Diurnal periodicity of flight by insects. Transactions of the Royal Entomological Society of London 166 (15): 393–479. https://doi.org/10.1111/j.1365-2311.1965.tb02304.x
  101. Li P., Zhu J., Qin Y. 2012. Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles. Journal of Economic Entomology 105 (4): 1149–1156. https://doi.org/10.1603/EC11109
  102. Linares Arroyo H., Abascal A., Degen T., Aubé M., Espey B. R., Gyuk G., Hölker F., Jechow A., Kuffer M., Sánchez de Miguel A., Simoneau A., Walczak K., Kyba C. C. M. 2024. Monitoring, trends and impacts of light pollution. Nature Reviews Earth & Environment 5 (6): 417–430. https://doi.org/10.1038/s43017-024-00555-9
  103. Lincoln B. 2009. Sunlight at Midnight: St. Petersburg and the Rise of Modern Russia. New York: Basic Books, 432 p.
  104. Lisney T. J., Ekesten B., Tauson R., Håstad O., Ödeen A. 2012. Using electroretinograms to assess flicker fusion frequency in domestic hens Gallus gallus domesticus. Vision Research 62: 125–133. https://doi.org/10.1016/j.visres.2012.04.002
  105. Lisney T. J., Rubene D., Rózsa J., Løvlie H., Håstad O., Ödeen A. 2011. Behavioural assessment of flicker fusion frequency in chicken Gallus gallus domesticus. Vision Research 51 (12): 1324–1332. https://doi.org/10.1016/j.visres.2011.04.009
  106. Liu Y. N., Liu Y. J., Chen Y. C., Ma H. Y., Lee H. Y. 2017. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes. Scientific Reports 7 (1): e40074. https://doi.org/10.1038/srep40074
  107. Longcore T. [Интернет-документ]. 2023. Effects of LED Lighting on Terrestrial Wildlife. Report No TR0003 (REV 10/98). Los Angeles: University of California, Institute of the Environment and Sustainability. March 31, 2023. 184 p. [URL: https://rosap.ntl.bts.gov/view/dot/77718]
  108. Mankowska N. D., Marcinkowska A. B., Waskow M., Sharma R. I., Kot J., Winklewski P. J. 2021. Critical flicker fusion frequency: a narrative review. Medicina 57 (10): 1096. https://doi.org/10.3390/medicina57101096
  109. Mason P. 2022. Plutella xylostella (diamondback moth). CABI Compendium. Wallingford, UK: CAB International, 39 p. [URL: https://www.cabidigitallibrary.org/doi/pdf/10.1079/cabicompendium.42318]
  110. Mazzoni V., Anfora G. 2021. Behavioral manipulation for pest control. Insects 12 (4): 287. https://doi.org/10.3390/insects12040287
  111. Meyer-Rochow V. B. 2001. The crustacean eye: dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage. Zoological Science 18 (9): 1175–1197. https://doi.org/10.2108/zsj.18.1175
  112. Mikkola K. 1972. Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near-ultraviolet and visible light. Annales Zoologici Fennici 9: 225–254.
  113. Miluch C. E., Dosdall L. M., Evenden M. L. 2013. The potential for pheromone-based monitoring to predict larval populations of diamondback moth, Plutella xylostella (L.), in canola (Brassica napus L.). Crop Protection 45: 89–97. https://doi.org/10.1016/j.cropro.2012.11.023
  114. Miluch C. E., Dosdall L. M., Evenden M. L. 2014. Factors influencing male Plutella xylostella (Lepidoptera: Plutellidae) capture rates in sex pheromone-baited traps on canola in western Canada. Journal of Economic Entomology 107 (6): 2067–2076. https://doi.org/10.1603/EC13371
  115. Niepoth N., Ke G., de Roode J. C., Groot A. T. 2018. Comparing behavior and clock gene expression between caterpillars, butterflies and moths. Journal of Biological Rhythms 33 (1): 52–64. https://doi.org/10.1177/0748730417746458
  116. Nieri R., Anfora V., Mazzoni V., Rossi Stacconi M. V. 2022. Semiochemicals, semiophysicals and their integration for the development of innovative multi-modal systems for agricultural pests’ monitoring and control. Entomologia Generalis 42 (2): 167–183. https://doi.org/10.1127/entomologia/2021/1236
  117. Niermann J., Brehm G. 2022. The number of moths caught by light traps is affected more by microhabitat than the type of UV lamp used in a grassland habitat. European Journal of Entomology 119: 36–42. https://doi.org/10.14411/eje.2022.004
  118. Nofemela R. S. 2010. The ability of synthetic sex pheromone traps to forecast Plutella xylostella infestations depends on survival of immature stages. Entomologia Experimentalis et Applicata 136 (3): 281–289. https://doi.org/10.1111/j.1570-7458.2010.01029.x
  119. Nowinszky L. (ed.). 2003. The Handbook of Light Trapping. Szombathely: Savaria University Press, Hungary, 276 p.
  120. Nowinszky L., Mészáros Z., Puskás J. 2008. The beginning and the end of the insects' flight towards the light according to different environmental lightings. Applied Ecology and Environmental Research 6 (2): 137–145. https://doi.org/10.15666/aeer/0602_135143
  121. Owens A. C., Cochard P., Durrant J., Farnworth B., Perkin E. K., Seymoure B. 2020. Light pollution is a driver of insect declines. Biological Conservation 241: 108259. https://doi.org/10.1016/j.biocon.2019.108259
  122. Owens A. C., Lewis S. M. 2018. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecology and Evolution 8 (22): 11337–11358. https://doi.org/10.1002/ece3.4557
  123. Park J. H., Lee H. S. 2017. Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Applied Biological Chemistry 60: 137–144. https://doi.org/10.1007/s13765-017-0263-2
  124. Pell J. K., Macauly E. D. M., Wilding N. 1993. A pheromone trap for dispersal of the pathogen Zoophthora radicans Brefeld. (Zygomycetes: Entomophthorales) amongst populations of the diamondback moth, Plutella xylostella L. (Lepidoptera; Yponomeutidae). Biocontrol Science and Technology 3 (3): 315–320. https://doi.org/10.1080/09583159309355286
  125. Pivnick K. A., Jarvis B. J., Gillott C., Slater G. P., Underhil E. W. 1990. Daily patterns of reproductive activity and the influence of adult density and exposure to host plants on reproduction in the diamondback moth (Lepidoptera: Plutellidae). Environmental Entomology 19 (3): 587–593. https://doi.org/10.1093/ee/19.3.587
  126. Powell J. A. 2009. Lepidoptera: moths, butterflies. In: V. H. Resh, R. T. Cardé (eds). Encyclopedia of Insects, 2nd Edition. New York, London: Academic Press, p. 559–587. https://doi.org/10.1016/B978-0-12-374144-8.00160-0
  127. Prabaningrum L., Moekasan T. K. 2021. Use of light trap for controlling cabbage pests. IOP Conference Series: Earth and Environmental Science 752 (1): 012027. https://doi.org/10.1088/1755-1315/752/1/012027
  128. Price P. W. 1997. Insect Ecology, 3rd Edition. New York et al.: John Wiley & Sons, 888 p.
  129. Railton R. C. R., Foster T. M., Temple W. 2009. A comparison of two methods for assessing critical flicker fusion frequency in hens. Behavioural Processes 80 (2): 196–200. https://doi.org/10.1016/j.beproc.2008.11.016
  130. Reddy G. V. P., Guerrero A. 2000. Pheromone‐based integrated pest management to control the diamondback moth Plutella xylostella in cabbage fields. Pest Management Science 56 (10): 882–888. https://doi.org/10.1002/1526-4998(200010)56:10%3C882::AID-PS226%3E3.0.CO;2-T
  131. Reddy G. V. P., Guerrero A. 2001. Optimum timing of insecticide applications against diamondback moth Plutella xylostella in cole crops using threshold catches in sex pheromone traps. Pest Management Science 57 (1): 90–94. https://doi.org/10.1002/1526-4998(200101)57:1%3C90::AID-PS258%3E3.0.CO;2-N
  132. Reddy G. V. P., Urs K. C. D. 1996. Studies on the sex pheromone of the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) in India. Bulletin of Entomological Research 86 (5): 585–590. https://doi.org/10.1017/S0007485300039389
  133. Reddy G. V. P., Urs K. C. D. 1997. Mass trapping of diamondback moth Plutella xylostella in cabbage fields using synthetic sex pheromones. International Pest Control 39 (4): 125–126.
  134. Rhainds M. 2024. Mass trapping lepidopteran pests with light traps, with focus on tortricid forest pests: what if? Insects 15 (4): 267. https://doi.org/10.3390/insects15040267
  135. Roach F. E., Gorden J. L. 1973. The Light of the Night Sky. Dordrecht: Springer Science & Business Media, 138 p.
  136. Robinson H. S. 1952. On the behaviour of night-flying insects in the neighbourhood of a bright source of light. Proceedings of the Royal Entomological Society of London. Series A, General Entomology 27 (1–3): 13–21. https://doi.org/10.1111/j.1365-3032.1952.tb00139.x
  137. Saint S. E., Hammond B. R., Khan N. A., Hillman C. H., Renzi-Hammond L. M. 2019. Temporal vision is related to cognitive function in preadolescent children. Applied Neuropsychology: Child 10 (4): 319–326. https://doi.org/10.1080/21622965.2019.1699096
  138. Sanes J. R., Zipursky S. L. 2010. Design principles of insect and vertebrate visual systems. Neuron 66 (1): 15–36. https://doi.org/10.1016/j.neuron.2010.01.018
  139. Saunders D. S. 2002. Insect Clocks. 3rd Edition. Amsterdam et al.: Elsevier, 576 p.
  140. Schubert E. F. 2006. Light-Emitting Diodes, 2nd Edition. Cambridge et al.: Cambridge University Press, 434 p.
  141. Shimoda M., Honda K. 2013. Insect reactions to light and its applications to pest management. Applied Entomology and Zoology 48: 413–421. https://doi.org/10.1007/s13355-013-0219-x
  142. Shirai Y. 1991. Seasonal changes and effects of temperature on flight ability of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Applied Entomology and Zoology 26 (1): 107–115. https://doi.org/10.1303/aez.26.107
  143. Shirai Y., Nakamura A. 1995. Relationship between the number of wild males captured by sex pheromone trap and the population density estimated from a mark-recapture study in the diamondback moth, Plutella xylostella (L.)(Lepidoptera: Yponomeutidae). Applied Entomology and Zoology 30 (4): 543–549. https://doi.org/10.1303/aez.30.543
  144. Sulifoa J. B., Ebenebe A. A. 2007. Evaluation of pheromone trapping of diamondback moth (Plutella xylostella) as a tool for monitoring larval infestations in cabbage crops in Samoa. The South Pacific Journal of Natural and Applied Sciences 25 (1): 43–46. https://doi.org/10.1071/SP07007
  145. Suresh S., Chandrasekaran S., Babu P. C. 1989. Studies on pheromone and light trap for the attraction of diamondback moth Plutella xylostella. South Indian Horticulture 37 (6): 353–354.
  146. Syed I., Mutthuraju G. P., Doddabasappa B., Sudarshan G. K., Sahida A., Chakravarthy A. K. 2019. Standardization of height and density of pheromone traps for mass trapping diamond back moth, Plutella xylostella (L.) in cabbage. Journal of Entomology and Zoology Studies 7 (1): 1049–1052.
  147. Szentkirályi F. 2002. Fifty-year-long insect survey in Hungary: T. Jermy’s contributions to light-trapping. Acta Zoologica Academiae Scientiarum Hungaricae 48 (Suppl 1): 85–105.
  148. Tarigan R., Asgar A., Moekasan T. K., Prabaningrum L., Hutabarat R. C., Marpaung A. E., Rosliani R., Karo B. B., Aryani D. S. 2024. The potential of light and pheromone traps for controlling main pests in cabbage. AIP Conference Proceedings 2957 (1): 090034. https://doi.org/10.1063/5.0184520
  149. Topagi S. C., Bhanu K. R. M., Kumar C. T. A. 2018. Mass trapping technique using pheromones: a standalone method for management of diamondback moth, Plutella xylostella (Linnaeus) (Plutellidae: Lepidoptera) in cabbage. International Journal of Applied Science and Engineering 15 (3): 211–232. https://doi.org/10.6703/IJASE.201812_15(3).211
  150. Truxa C., Fiedler K. 2012. Attraction to light — from how far do moths (Lepidoptera) return to weak artificial sources of light? European Journal of Entomology 109 (1): 77–84. https://doi.org/10.14411/eje.2012.010
  151. Turner W. B. 1918. Female Lepidoptera at light traps. Journal of Agricultural Research 14 (3): 135–149.
  152. Tyler C. J., Mahajan S., Smith L., Okamoto H., Wijnen H. 2025. Adult diel locomotor behaviour in the agricultural pest Plutella xylostella reflects temperature-driven and light-repressed regulation rather than coupling to circadian clock gene rhythms. Insects 16 (2): 182. https://doi.org/10.3390/insects16020182
  153. Umeton D., Read J. C. A., Rowe C. 2017. Unravelling the illusion of flicker fusion. Biology Letters 13 (2): 20160831. https://doi.org/10.1098/rsbl.2016.0831
  154. van Deijk J. R., Wever R., van der Heide S. R., Boers J., van Deijl I. H. J., van Grunsven R. H. A. 2024. UV–LEDs outperform actinics for standalone moth monitoring. Journal of Insect Conservation 28 (5): 959–968. https://doi.org/10.1007/s10841-024-00568-1
  155. van der Kooi C. J., Stavenga D. G., Arikawa K., Belušič G., Kelber A. 2021. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annual Review of Entomology 66 (1): 435–461. https://doi.org/10.1146/annurev-ento-061720-071644
  156. van Grunsven R. H., van Deijk J. R., Donners M., Berendse F., Visser M. E., Veenendaal E., Spoelstra K. 2020. Experimental light at night has a negative long-term impact on macro-moth populations. Current Biology 30 (12): R694–R695. https://doi.org/10.1016/j.cub.2020.04.083
  157. Vickers R. A., Furlong M. J., White A., Pell J. K. 2004. Initiation of fungal epizootics in diamondback moth populations within a large field cage: proof of concept for auto‐dissemination. Entomologia Experimentalis et Applicata 111 (1): 7–17. https://doi.org/10.1111/j.0013-8703.2004.00140.x
  158. Wagner D. L., Grames E. M., Forister M. L., Berenbaum M. R., Stopak D. 2021. Insect decline in the Anthropocene: death by a thousand cuts. Proceedings of the National Academy of Sciences 118 (2): e2023989118. https://doi.org/10.1073/pnas.2023989118
  159. Wainwright C., Jenkins S., Wilson D., Elliott M., Jukes A., Collier R. 2020. Phenology of the diamondback moth (Plutella xylostella) in the UK and provision of decision support for Brassica growers. Insects 11 (2): 118. https://doi.org/10.3390/insects11020118
  160. Walker G. P., Wallace A. R., Bush R., MacDonald F. H., Suckling D. M. 2003. Evaluation of pheromone trapping for prediction of diamondback moth infestations in vegetable brassicas. New Zealand Plant Protection 56: 180–184. https://doi.org/10.30843/nzpp.2003.56.6039
  161. Wang D., Yang G., Chen W. 2021. Diel and circadian patterns of locomotor activity in the adults of diamondback moth (Plutella xylostella). Insects 12 (8): 727. https://doi.org/10.3390/insects12080727
  162. Wang X. P., Le V. T., Fang Y. L., Zhang Z. N. 2004. Trap effect on the capture of Plutella xylostella (Lepidoptera: Plutellidae) with sex pheromone lures in cabbage fields in Vietnam. Applied Entomology and Zoology 39 (2): 303–309. https://doi.org/10.1303/aez.2004.303
  163. Warrant E. J. 2017. The remarkable visual capacities of nocturnal insects: vision at the limits with small eyes and tiny brains. Philosophical Transactions of the Royal Society B372 (1717): 20160063. http://doi.org/10.1098/rstb.2016.0063
  164. Warrant E., Somanathan H. 2022. Colour vision in nocturnal insects. Philosophical Transactions of the Royal Society B377 (1862): 20210285. https://doi.org/10.1098/rstb.2021.0285
  165. Wikipedia [Интернет-документ]. 2024. Talbot–Plateau law. [URL: https://en.wikipedia.org/wiki/Talbot-Plateau_law].
  166. Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1 (6): 80–83. https://doi.org/10.2307/3001968
  167. Williams C. B. 1939. An analysis of four years captures of insects in a light trap. Part I. General survey; sex proportion; phenology; and time of flight. Transactions of the Royal Entomological Society of London 89 (6): 79–131. https://doi.org/10.1111/j.1365-2311.1939.tb00738.x
  168. Williams C. B. 1948. The Rothamsted light trap. Proceedings of the Royal Entomological Society of London, Series A 23: 80–85.
  169. Winder S. 2017. Power Supplies for LED Driving, 2nd Edition. Kidlington, Oxford: Newnes, 320 p.
  170. Witzgall P., Kirsch P., Cork A. 2010. Sex pheromones and their impact on pest management. Journal of Chemical Ecology 36 (1): 80–100. https://doi.org/10.1007/s10886-009-9737-y
  171. Wolf E. 1933. Critical frequency of flicker as a function of intensity of illumination for the eye of the bee. Journal of General Physiology 17 (1): 7–19. https://doi.org/10.1085/jgp.17.1.7
  172. Wu Z., Wang L., Tu Y., Sun Y. 2023. Effect of PWM dimming frequency of OLED smartphones on visual fatigue. International Conference on Display Technology 54 (S1): 379–382. https://doi.org/10.1002/sdtp.16308
  173. Yun C. N., Maeng I. S., Yang S. H., Hwang U. J., Kim K. N., Kim K. C., Ho K. C., Ri C. S., Yang H. S., Jang S. H. 2023. Evaluating the phototactic behavior responses of the diamondback moth, Plutella xylostella, to some different wavelength LED lights in laboratory and field. Journal of Asia-Pacific Entomology 26 (3): 102080. https://doi.org/10.1016/j.aspen.2023.102080
  174. Zahoor S., Pathania S. S., Ali I., Anees M., Ayoub L., Kishore G. 2023. Advancing integrated pest management: utilizing pheromone traps for population monitoring of Plutella xylostella in cole crops. International Journal of Environment and Climate Change 13 (10): 4435–4443. https://doi.org/10.9734/IJECC/2023/v13i103121

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic illustrating the distribution of energy expended for luminescence (red shaded rectangle) when the SDI is supplied with current I (A - constant, B - pulsed) for the observed time period T.

Download (14KB)
3. Fig. 2. Meteorological conditions in the summer months of 2020-2024 on the territory of the PPL research and production base.

Download (100KB)
4. Fig. 3. Electrical scheme of the electronic block of the trap with SDI at pulse power supply. 1 - LEDs, 2 - photoresistor, 3 - battery,4 - Attiny 25V microcontroller, 5 - illuminance programming button, 6 - choke

Download (26KB)
5. Fig. 4. Podecadal dynamics of catching ( ± SE) of cabbage moth adults by traps equipped with DC power supply SDI (red bars) and SPA (green bars) in the experimental field of cabbage PPL VIR in 2020 and 2021.

Download (52KB)
6. Fig. 5. Subdecadal dynamics of catching ( ± SE) of cabbage moth adults by traps equipped with high-frequency pulsed current feeding SDIs (red columns) and SPAs (green columns) in the PPL VIR cabbage experimental field in 2022-2024.

Download (74KB)
7. Fig. 6. Cardboard plates with glue removed from the traps installed in the experimental field.

Download (277KB)
8. Fig. 7. Cardboard plates with glue extracted from the installed in the experimental fieldtraps installed in the experimental field of cabbage PPL VIR, equipped with SDI (A, B), fed with high-frequency pulse current, and SPA (A, D).

Download (248KB)

Copyright (c) 2025 Russian Academy of Sciences