Fabrication of GRIN microstructures by two-photon lithography
- Authors: Aparin M.D.1, Baluyan T.G.1, Sharipova M.I.1, Sirotin M.A.1, Lyubin E.V.1, Soboleva I.V.1, Bessonov V.O.1, Fedyanin A.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 87, No 6 (2023)
- Pages: 807-812
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654377
- DOI: https://doi.org/10.31857/S0367676523701405
- EDN: https://elibrary.ru/VKYZQG
- ID: 654377
Cite item
Abstract
The method of two-photon lithography is used to fabricate GRIN microstructures. Test rectangular structures with sizes 25 × 25 × 3 micrometers were used with varying laser intensity by linear or gaussian distribution in one dimension. The resulting refractive index has been tuned in the range of 0.03. The suggested method can be applied to produce arbitrarily shaped 3D GRIN micro-optical elements.
About the authors
M. D. Aparin
Lomonosov Moscow State University
Author for correspondence.
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
T. G. Baluyan
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
M. I. Sharipova
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
M. A. Sirotin
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
E. V. Lyubin
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
I. V. Soboleva
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
V. O. Bessonov
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
A. A. Fedyanin
Lomonosov Moscow State University
Email: aparin@nanolab.phys.msu.ru
Russia, 119991, Moscow
References
- Gomez-Reino C., Perez M., Bao C. Gradient-index optics: fundamentals and applications. Springer, 2002. 239 p.
- Hwang Y., Phillips N., Dale E.O. et al. // Opt. Express. 2022. V. 30. No. 8. P. 12294.
- Gomez-Reino C., Perez M.V., Bao C., Flores-Arias T.M. // Laser Photon. Rev. 2008. V. 2. No. 3. P. 203.
- Kundal S., Bhatnagar A., Sharma R. Optical and wireless technologies, Springer, 2022. 443 p.
- Pickering M.A., Taylor R.L., Moore D.T. // Appl. Opt. 1986. V. 25. No. 19. P. 3364.
- Ohmi S., Sakai H., Asahara Y. et al. // Appl. Opt. 1988. V. 27. No. 3. P. 496.
- Sinai P. // Appl. Opt. 1971. V. 10. No. 1. P. 99.
- Liu J.H., Yang P.C., Chiu Y.H. // J. Polym. Sci. A. 2006. V. 44. No. 20. P. 5933.
- Liu J.H., Chiu Y.H. // Opt. Lett. 2009. V. 34. No. 9. P. 1393.
- Mingareev I., Kang M., Truman M. et al. // Opt. Laser Technol. 2020. V. 126. Art. No. 106058.
- Dylla-Spears R., Yee T.D., Sasan K. et al. // Sci. Advances. 2020. V. 6. No. 47. Art. No. eabc7429.
- Mao M., He J., Li X. et al. // Micromachines. 2017. V. 8. No. 4. P. 113.
- Sharipova M.I., Baluyan T.G., Abrashitova K.A. et al. // Opt. Mater. Express. 2021. V. 11. No. 2. P. 371.
- Zhou X., Hou Y., Lin J. // AIP Advances. 2005. V. 5. No. 3. Art. No. 030701.
- Ocier R.C., Richards C.A., Bacon-Brown D.A. et al. // Light Sci. Appl. 2020. V. 9. Art. No. 196.
- Žukauskas A., Matulaitienė I., Paipulas D. et al. // Laser Photon. Rev. 2015. V. 9. No. 6. P. 706.
- Pertoldi L., Zega V., Comi C., Osellame R. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 175102.
- Drexler W., Fujimoto J.G. Optical coherence tomography. Technology and applications. Springer, 2008. 1327 p.
- Sirotin M.A., Romodina M.N., Lyubin E.V. et al. // Biomed. Opt. Express. 2022. V. 13. No. 1. P. 14.
- Safronov K.R., Gulkin D.N., Antropov I.M. et al. // ACS Nano. 2020. V. 14. No. 8. P. 10428.
- Safronov K.R., Bessonov V.O., Akhremenkov D.V. et al. // Laser Photon. Rev. 2022. V. 16. No. 4. Art. No. 2100542.
- Giessibl F.J. // Rev. Mod. Phys. 2003. V. 75. No. 3. P. 949.
Supplementary files
