Effect of oxygen vacancies on the electronic properties of the LaMnO3/BaTiO3 heterostructure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the LaMnO3/BaTiO3 heterostructure, the influence of the presence of oxygen vacancies located in different layers of the heterostructure on the structural, electronic, and magnetic properties was studied using ab initio calculations. It was found that the presence of vacancies in any layer of the heterostructure induces the appearance of interface conductivity concentrated within the atomic layer.

About the authors

I. I. Gumarova

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Science; Kazan Federal University, Institute of Physics; Kazan Federal University, Institute of Physics

Author for correspondence.
Email: iipiyanzina@kpfu.ru
Russia, 420029, Kazan; Russia, 420008, Kazan; Russia, 420008, Kazan

R. F. Mamin

Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of the Russian Academy of Science

Email: iipiyanzina@kpfu.ru
Russia, 420029, Kazan

References

  1. Ohtomo A., Hwang H.Y. // Nature. 2004. V. 427. P. 423.
  2. Reyren N., Thiel S., Caviglia A.D. et al. // Science. 2007. V. 317. P. 1196.
  3. Bert J.A., Kalisky B., Bell C. et al. // Nature Phys. 2011. V. 7. P. 767.
  4. Li L., Richter C., Mannhart J., Ashoori R.C. // Nature Phys. 2011. V. 7. P. 762.
  5. Brinkman A., Huijben M., Van Zalk M. et al. // Nature Mater. 2007. V. 6. P. 493.
  6. Pavlenko N., Kopp T., Tsymbal E.Y. et al. // Phys. Rev. B. 2012. V. 86. No. 6. Art. No. 064431.
  7. Pavlenko N., Kopp T., Tsymbal E.Y. et al. // Phys. Rev. B. 2012. V. 85. Art. No. 020407.
  8. Pavlenko N., Kopp T., Mannhart J. // Phys. Rev. B. 2013. V. 88. Art. No. 201104.
  9. Lechermann F., Boehnke L., Grieger D., Piefke C. // Phys. Rev. B. 2014. V. 90. Art. No. 085125.
  10. Park J., Cho B.G., Kim K.D. et al. // Phys. Rev. Lett. 2013. V. 110. Art. No. 017401.
  11. Salluzzo M., Gariglio S., Stornaiuolo D. et al. // Phys. Rev. Lett. 2013. V. 111. Art. No. 087204.
  12. Piyanzina I.I., Eyert V., Lysogorskiy Y.V. et al. // J. Phys. Cond. Matter. 2019. V. 31. Art. No. 295601.
  13. Fredrickson K.D., Demkov A.A. // Phys. Rev. B. 2015. V. 91. Art. No. 115126.
  14. Niranjan M.K., Wang Y., Jaswal S.S., Tsymbal E.Y. // Phys. Rev. Lett. 2009. V. 103. Art. No. 016804.
  15. Liu X., Tsymbal E.Y., Rabe K.M. // Phys. Rev. B. 2018. V. 97. Art. No. 094107.
  16. Weng Y., Niu W., Huang X. et al. // Phys. Rev. B. 2021. V. 103. Art. No. 214101.
  17. Hohenberg P., Kohn W. // Phys. Rev. 1964. V. 136. Art. No. B864.
  18. Kohn W., Sham L.J. // Phys. Rev. 1965. V. 140. Art. No. A1133.
  19. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. Art. No. 3865.
  20. Blöchl P.E. // Phys. Rev. B. 1994. V. 50. Art. No. 17953.
  21. Kresse G., Furthmьller J. // Comp. Mater. Sci. 1996. V. 6. P. 15.
  22. Kresse G., Furthmьller J. // Phys. Rev. B. 1996. V. 54. Art. No. 11169.
  23. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758.
  24. MedeA version 3.4. San Diego: Materials Design Inc., 2012.
  25. Dudarev S.L., Botton G.A., Savrasov S.Y. et al. // Phys. Rev. B. 1998. V. 57. No. 3. P. 1505.
  26. Piyanzina I.I., Kopp T., Lysogorskiy Y.V. et al. // J. Phys. Cond. Matter. 2017. V. 29. Art. No. 095501.
  27. Wang L., Maxisch T., Ceder G. // Phys. Rev. B. 2006. V. 73. Art. No. 195107.
  28. Ciucivara A., Sahu B., Kleinman L. // Phys. Rev. B. 2008. V. 77. Art. No. 092407.
  29. Cossu F., Schwingenschlцgl U., Eyert V. // Phys. Rev. B. 2013. V. 88. Art. No. 045119.
  30. Zhang S.B., Northrup J.E. // Phys. Rev. Lett. 1991. V. 67. P. 2339.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1003KB)
3.

Download (681KB)
4.

Download (77KB)

Copyright (c) 2023 И.И. Гумарова, Р.Ф. Мамин