Frequency multiplication in a high-current relativistic gyrotron for obtaining high-power THz-band radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using averaged equations and 3D particle-in-cell simulations, we investigate the frequency multiplication regime in a high-current relativistic gyrotron operating in 0.1 THz frequency band. We demonstrate that the ratio of the 3rd harmonic power and the fundamental cyclotron resonance power can reach 0.4–0.8%, which aloows for obtaining the 0.3 THz radiation with sub-MW output power level.

About the authors

A. N. Leontiev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

R. M. Rozental

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod; Russia, 603950, Nizhny Novgorod

N. S. Ginzburg

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

I. V. Zotova

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

A. M. Malkin

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky State University of Nizhny Novgorod

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod; Russia, 603950, Nizhny Novgorod

A. S. Sergeev

Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russia, 603950, Nizhny Novgorod

References

  1. Sabchevski S., Glyavin M., Mitsudo S. et al. // J. Infrared Millim. THz Waves. 2021. V. 42. No. 7. P. 715.
  2. Thumm M. // J. Infrared Millim. THz Waves. 2020. V. 41. No. 1. P. 1.
  3. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Dev. 2022. V. 69. No. 3. P. 1451.
  4. Завольский Н.А., Нусинович Г.С., Павельев А.Б. // Изв. вузов. Радиофиз. 1988. Т. 31. № 3. С. 361.
  5. Idehara T., Ogawa I., Shimizu Y., Tatsukawa T. // J. Infrared Millim. THz Waves. 1998. V. 19. P. 803.
  6. Golubiatnikov G.Yu., Koshelev M.A., Tsvetkov A.I. et al. // IEEE Trans. Terahertz Sci. Tech. 2020. V. 10. No. 5. P. 502.
  7. Glyavin M., Zotova I., Rozental R. et al // J. Infrared Millim. THz Waves. 2020. V. 41. P. 1245.
  8. Братман В.Л., Гинзбург Н.С., Нусинович Г.С. и др. // В кн.: Релятивистская высокочастотная электроника. Горький: ИПФАН СССР, 1979. С. 157.
  9. Dumbrajs O., Saito T., Tatematsu Y., Yamaguchi Y. // Phys. Plasmas. 2016. V. 23. Art. No. 093109.
  10. Ginzburg N.S., Nusinovich G.S., Zavolsky N.A. // Int. J. Electron. 1986. V. 61. No. 6. P. 881.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (60KB)
3.

Download (2MB)
4.

Download (80KB)

Copyright (c) 2023 А.Н. Леонтьев, Р.М. Розенталь, Н.С. Гинзбург, И.В. Зотова, А.М. Малкин, А.С. Сергеев