Study of the effect of cation substitution on the formation of microcracks in Ni-rich layered oxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The formation of microcracks in agglomerated particles of positive electrode (cathode) material based on Ni-enriched layered oxide LiNi0.6Mn0.2Co0.2O2 has been studied using transmission electron microscopy. The influence of magnesium cations as a doping additive on the stability of the material to the accumulation of structural defects and the formation of cracks during long-term galvanostatic cycling is demonstrated, and a mechanism for stress relaxation is proposed.

About the authors

I. A. Moiseev

Skolkovo Institute of Science and Technology

Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

А. А. Golubnichiy

Skolkovo Institute of Science and Technology

Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

А. P. Pavlova

Skolkovo Institute of Science and Technology

Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

А. M. Abakumov

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: a.abakumov@skoltech.ru
Russia, 121205, Moscow

References

  1. Ming J., Danilov D.L., Rüdiger-A.E., Notten P.H.L. // Adv. Energy Mater. 2021. V. 11. No. 48. Art. No. 2103005.
  2. Hausbrand R., Cherkashinin G., Ehrenberg H. et al. // Mater. Sci. Engin. B. 2015. V. 192. P. 3.
  3. Li W., Dolocan A., Oh P., Celio H. et al. // Nature Commun. 2017. V. 8. P. 14589.
  4. Li W., Kim U.-H., Dolocan A. et al. // ACS Nano. 2017. V. 11. P. 5863.
  5. Zhan C., Wu T., Lu J., Amine K. // Energy Environ. Sci. 2018. V. 11. P. 243.
  6. Jung R., Metzger M., Maglia F. et al. // J. Electrochem. Soc. 2017. V. 164. Art. No. A1377.
  7. Zhang H., May B.M., Serrano-Sevillano J. et al. // Chem. Mater. 2018. V. 30. P. 699.
  8. Lin Q., Guan W., Meng J. et al. // Nano Energy. 2018. V. 54. No. 12. P. 321.
  9. Li J., Manthiram A. // Adv. Energy Mater. 2019. V. 9. No. 45. Art. No. 1902731.
  10. Yan P., Zheng J., Gu M. et al. // Nature Commun. 2017. V. 8. Art. No. 14101.
  11. Sun H., Zhao K. // J. Phys. Chem. C. 2017. V. 121. P. 6002.
  12. Zhang S.S. // E. Store. Mat. 2020. V. 24. P. 247.
  13. Mao Y., Wang X., Xia S. et al. // Adv. Funct. Mater. 2019. V. 29. P. 18.
  14. Li J., Downie L.E., Ma L. et al. // J. Electrochem. Soc. 2015. V. 162. Art. No. A1401.
  15. Zhang S.S. // J. Energy Chem. 2020. V. 41. No. 2. P. 135.
  16. Yoon C.S., Dun D.W., Myung S.T., Sun Y.K. // ACS Energy Lett. 2017. V. 2. P. 1150.
  17. Ryu H.H., Park K.J., Yoon C.S., Sun Y.K. // Chem. Mater. 2018. V. 30. P. 1155.
  18. Bi Y., Tao J., Wu Y. et al. // Science. 2020. V. 370. P. 1313.
  19. Kim H., Kim M.G., Jeong H.Y. et al. // Nano Lett. 2015. V. 15. No. 3. P. 2111.
  20. Yan P., Zheng J., Gu M. et al. // Nature Commun. 2017. V. 8. Art. No. 14101.
  21. Zhu J., Chen G. // J. Mater. Chem. A. 2019. V. 7. P. 5463.
  22. Delmas C., Fouassier C., Hagenmuller P. // Physica B + C. 1980. V. 99. No. 1–4. P. 81.
  23. Perovic D.D., Rossouw C.J., Howie A. // Ultramicroscopy. 1993. V. 52. P. 353.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (2MB)
4.

Download (2MB)

Copyright (c) 2023 И.А. Моисеев, А.А. Голубничий, А.П. Павлова, А.М. Абакумов