Nonlinear and relaxation processes in piezoceramics in weak electric fields
- Authors: Shvetsova N.A.1, Shvetsov I.A.1, Petrova E.I.1, Reznichenko A.N.1, Rybyanets A.N.1
-
Affiliations:
- Institute of Physics, Southern Federal University
- Issue: Vol 87, No 9 (2023)
- Pages: 1362-1368
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654623
- DOI: https://doi.org/10.31857/S0367676523702393
- EDN: https://elibrary.ru/AERNED
- ID: 654623
Cite item
Abstract
We study the effects of piezoelectric hysteresis and relaxation induced by a weak constant electric field in ferroelectric ceramics. Using the piezoelectric resonance analysis method and program, precision measurements of the impedance spectra for thickness and radial vibrations of thin piezoceramic disks were performed for various polarities of the applied constant electric field and polarization of the piezoceramic. An analysis of the field and time dependences of the complex piezoelectric constants of piezoceramics obtained by processing sequentially measured impedance spectra is carried out, and a physical interpretation of the results is proposed.
About the authors
N. A. Shvetsova
Institute of Physics, Southern Federal University
Author for correspondence.
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don
I. A. Shvetsov
Institute of Physics, Southern Federal University
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don
E. I. Petrova
Institute of Physics, Southern Federal University
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don
A. N. Reznichenko
Institute of Physics, Southern Federal University
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don
A. N. Rybyanets
Institute of Physics, Southern Federal University
Email: nashvecova@sfedu.ru
Russia, 344090, Rostov-on-Don
References
- Zhao D., Lenz T., Gelinck G.H. et al. // Nature Commun. 2019. V. 10. No. 6. Art. No. 2547.
- IEEE Standard on piezoelectricity. ANSI/IEEE Std. 176-1987. New York: IEEE 1987. 176 p.
- Kwok K.W., Chan H.L.W., Choy C.L. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1997. V. 44. No. 4. P. 733.
- Esin A.A., Alikin D.O., Turygin A.P. et al. // J. Appl. Phys. 2017. V. 121. No. 7. Art. No. 074101.
- Turygin A.P., Alikin D.O., Abramov A.S. et al. // Ferroelectrics. 2017. V. 508. No. 1. P. 77.
- Rybianets A. Motsarenko T., Goland V., Kushkuley L. // Proc. USE2007 (Tsukuba, 2007). P. 1909.
- Швецов И.А., Луговая М.А., Швецова Н.А. и др. // Письма в ЖТФ. 2020. Т. 46. № 8. С. 14; Shvetsov I.A., Lugovaya M.A., Shvetsova N.A. et al. // Tech. Phys. Lett. 2020. V. 46 No. 4. P. 368.
- Shvetsova N.A., Shcherbinin S.A., Shvetsov I.A. et al. // Ferroelectrics. 2021. V. 576. No. 1. P. 100.
- https://www.tasitechnical.com/prap.
- Konstantinov G.M. Rybyanets A.N., Konstantinova Y.B. et al. // In: Advanced materials: manufacturing, physics, mechanics and applications. N.Y.: Springer Proc. Phys, 2016. P. 229.
- Berlincourt D.A., Curran D.R., Jaffe H. Physical acoustics. N.Y.: Academic Press, 1964. P. 169.
- Shen L.C., Kong J.A. Applied electromagnetism. Boston: PWS Engineering, 1983.
- Rybyanets A.N., Chang S.-H., Theerakulpisut S. // In: Advanced materials – studies and applications. N.Y.: Nova Science Publishers Inc., 2015. P. 147.
Supplementary files
