Soliton solutions of the equations of hydrodynamics in describing collisions and oscillations of atomic nuclei
- Authors: D’yachenko A.T.1,2, Mitropolsky I.A.2
-
Affiliations:
- St. Petersburg State Transport University
- Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”
- Issue: Vol 87, No 8 (2023)
- Pages: 1155-1159
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654639
- DOI: https://doi.org/10.31857/S0367676523702083
- EDN: https://elibrary.ru/ZCIDKU
- ID: 654639
Cite item
Abstract
The hydrodynamic approach was used to find an analytical solution of the hydrodynamic equations in the soliton approximation for layer collisions in the one- and two-dimensional cases. The compression stage, the decompression stage, and the expansion stage are considered within the framework of a single formula for layers with energies on the order of ten MeV per nucleon. Our generalization to the two-dimensional case leads to the idea of the formation of a rarefied bubble region at the stage of expansion. The approach can be used in other fields for calculations of the nonlinear dynamics of oscillations of complex systems.
About the authors
A. T. D’yachenko
St. Petersburg State Transport University; Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: dyachenko_a@mail.ru
Russia, 190031, St. Petersburg; Russia, 188300, Gatchina
I. A. Mitropolsky
Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”
Email: dyachenko_a@mail.ru
Russia, 188300, Gatchina
References
- Bohr N., Wheeler J.A. // Phys. Rev. 1939. V. 56. P. 426.
- Stöcker H., Greiner W. // Phys. Reports. 1986. V. 137. No. 5–6. P. 277.
- D’yachenko A.T., Gridnev K.A., Greiner W. // J. Physics G. 2013. V. 40. No. 3. Art. No. 085101.
- Дьяченко А.Т., Митропольский И.А. // ЯФ. 2020. Т. 83. С. 317; D’yachenko A.T., Mitropolsky I.A. // Phys. Atom. Nucl. 2020. V. 83. P. 558.
- Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 508; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 391.
- Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 716; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 554.
- Дьяченко А.Т., Гриднев К.А., Митропольский И.А // Изв. РАН. Сер. физ. 2015. Т. 79. № 7. С. 952; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 79. No. 7. P. 858.
- Дьяченко А.Т., Митропольский И.А // Изв. РАН. Сер. физ. 2017. Т. 81. № 12. С. 1720; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 81. No. 12. P. 1521.
- D’yachenko A.T., Mitropolsky I.A. // EPJ Web Conf. 2019. V. 204. Art. No. 03018.
- D’yachenko A.T., Mitropolsky I.A. // Phys. Atom. Nucl. 2019. V. 82. P. 1641.
- Korteweg D.J., Vries G. // Phil. Mag. 1895. V. 39. P. 422.
- D’yachenko A.T. // Proc. Int. Conf. Nucl. Phys. “Nuclear Shells–50 Years” (Dubna, 1999). P. 492.
- Дьяченко А.Т., Митропольский И.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 8. С. 1162; D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 962.
- Siemens P.J., Bethe H.A. // Phys. Rev. Lett. 1967. V. 18. P. 704.
- Wong C.Y. // Ann. Phys. 1973. V. 77. P. 279.
- Decharge J., Beger J.-F., Dietrich K., Weiss M.S. // Phys. Lett. B. 1999. V. 451. P. 275.
- Mutschler A. et al. // Nature Phys. 2017. V. 13. P. 152.
- Fam X.H., Yong D.C., Zuo W. // Phys. Rev. C. 2019. V. 99. No. 4. Art. No. 041601.
Supplementary files
