Optical dynamics of a supercrystal of V-type quantum emitters: effects of the electronic states' dephasing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A theoretical study of the optical response of a two-dimensional supercrystal (monolayer) of quantum emitters with a doublet in the excited state to the action of a continuous external field has been carried out, considering the dephasing of the electronic states of the system. The secondary field acting on the V-emitter from other V-emitters of the system forms their nonlinearity and provides internal positive feedback, which leads to bistability, periodic and aperiodic auto-oscillations and including chaotic behavior. In the presence of dephasing, the multistability of the optical response is preserved. Phase relaxation leads to a change in the scenario of the system dynamics from chaos to periodic oscillations of the field amplitude, i. e., to a “chaos — limit cycle” bifurcation, a decrease in the reflectivity of the monolayer in linear and nonlinear modes.

Full Text

Restricted Access

About the authors

D. Ya. Bayramdurdyev

Akmullah Bashkir State Pedagogical University

Email: rfmalikov@mail.ru
Russian Federation, Ufa

R. F. Malikov

Akmullah Bashkir State Pedagogical University

Author for correspondence.
Email: rfmalikov@mail.ru
Russian Federation, Ufa

References

  1. Novoselov K.S., Geim A.K., Morozov S.V. et al. // Science. 2004. V. 306. P. 666.
  2. Neto A.H.C., Guinea F., Peres N.M.R. et al. // Rev. Mod. Phys. 2009. V. 81. P. 109.
  3. Manzeli S., Ovchinnikov D., Pasquier D. et al. // Nat. Rev. Mater. 2017. V. 2. P. 17033.
  4. Чернозатонский Л.А., Артюх А.А. // УФН 2018. Т. 188. С. 3; Chernozatonskii L.A., Artyukh A.A. // Phys. Usp. 2018. V. 61. P. 2.
  5. Back P., Zeytinoglu S., Ijaz A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037401.
  6. Scuri G., Zhou Y., High A. A. et al. // Phys. Rev. Lett. 2018. V. 120. Art. No. 037402.
  7. Bonaccorso F., Lombardo A., Hasan T. et al. // Mater. Today. 2012. V. 15. P. 564.
  8. Bhimanapati G.R., Lin Z., Meunier V. et al. // ACS Nano. 2015. V. 9. Art. No. 11509.
  9. Tan C., Cao X., Wu X.J. et al. // Chem. Rev. 2017. V. 117. P. 6225.
  10. Solntsev A.S., Agarwal G.S., Kivshar Y.S. // Nature Photon. 2021. V. 15. P. 327.
  11. Jariwala D., Marks T.J., Hersam M.C. // Nature Mater. 2017. V. 16. P. 170.
  12. Evers W.H., Goris B., Bals S. et al. // Nano Lett. 2013. V. 13. P. 2317.
  13. Baranov A.V., Ushakova E.V., Golubkov V.V. et al. // Langmuir. 2015. V. 31. P. 506.
  14. Ushakova E.V., Cherevkov S.A., Litvin A.P. et al. // J. Phys. Chem. 2016. V. 120. P. 25061.
  15. Liu W., Luo X., Bao Y. et al. // Nature Chem. 2017. V. 9. P. 563.
  16. Mu P., Zhou G., Chen C.L. // Nano-Struct. NanoObjects. 2018. V. 15. P. 153.
  17. Бабина О.Ю., Глазов С.Ю., Федулов И.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 30; Babina O.Yu., Glazov S.Yu., Fedulov I.N. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 22.
  18. Самарцев В.В., Митрофанова Т.Г., Хасанов О.Х. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 302; Samartsev V.V., Mitrofanova T.G., Khasanov O.Kh. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 216.
  19. Zheludev N.I. // Science. 2010. V. 328. P. 582.
  20. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // Phys. Rev. A. 2019. V. 100. No. 3. Art. No. 033820.
  21. Ryzhov I.V., Malikov R.F., Malyshev A.V., Malyshev V.A. // J. Optics. 2021. V. 23. Art. No. 115102.
  22. Байрамдурдыев Д.Я., Маликов Р.Ф., Рыжов И.В., Малышев В.А. // ЖЭТФ. 2020. Т. 158. № 2(8). С. 269; Bairamdurdyev D.Ya., Malikov R.F., Ryzhov I.V., Malyshev V.A. // JETP. 2020. V. 131. No. 2. P. 244.
  23. Маликов Р.Ф. Математическое моделирование кооперативных когерентных эффектов в спектроскопии: монография. Уфа: Изд-во «Гилем», 2006. — 206 с.
  24. Федянин В.В., Каримуллин К.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 361.
  25. Efros Al.L., Rosen M., Kuno M. et al. // Phys. Rev. B. 1996. V. 54. No. 7. P. 4843.
  26. Stufler S., Machnikowski P., Ester P. et al. // Phys. Rev. B. 2006. V. 73. Art. No. 125304.
  27. Dicke R.H. // Phys. Rev. 1954. V. 93. P. 99.
  28. Маликов Р.Ф., Трифонов Е.Д., Зайцев А.И. // ЖЭТФ. 1979. T. 76. С. 65; Malikov R.F., Trifonov E.D., Zaitsev A.I. // Sov. Phys. JETP. 1979. V. 49. P. 33.
  29. Benedict M.G., Ermolaev A.M., Malyshev V.A. et al. Super-radiance: multiatomic coherent emission. Bristol: IOP Publ., 1996.
  30. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of oscillators. New York: Pergamon Press, 1966.
  31. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Berlin: Springer, 1986.
  32. Ding F., Bozhevolnyi S.I. // Mater. Today. 2023. V. 71. P. 63.
  33. Тимощенко Е.В. Моделирование нелинейной динамики материального отклика плотных оптических слоев на резонансное излучение: монография. Могилев: МГУ им. А. А. Кулешова, 2023. 236 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of energy levels and transitions of a quantum V-emitter

Download (48KB)
3. Fig. 2. Stationary solutions when phase relaxation is taken into account

Download (143KB)
4. Fig. 3. Dynamics and spectrum of the optical response of the supercrystal in the presence of phase relaxation

Download (394KB)
5. Fig. 4. Effect of dephasing on the linear reflection coefficient R, which is a function of the resonance detuning Δ31. Doublet splitting value Δ32 = 200

Download (112KB)
6. Fig. 5. Nonlinear reflection coefficient R of the supercrystal from intensity at different values of G of energy states dephasing. Dark (red) lines correspond to stable (unstable) regions of the reflection coefficient R

Download (114KB)

Copyright (c) 2024 Russian Academy of Sciences