Klyshko method for analog photodetectors and absolute measurement of photon numbers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A modification of the Klyshko method for absolute calibration of analog photodetectors is considered. It is shown that the photocurrent distribution of an analog detector can be approximated by convolution of the Poisson distribution of the number of photoelectrons with a function describing single photopulses, while the number of photons incident on the detector can be determined from the statistical properties of biphoton radiation. The ratio of the number of photoelectrons to the number of photons gives the efficiency of an analog photodetector, which can be used for measuring the intensity of radiation incident on the detector in units of photon numbers.

Full Text

Restricted Access

About the authors

P. A. Prudkovsky

Lomonosov Moscow State University

Author for correspondence.
Email: vysogota@gmail.com
Russian Federation, Moscow

D. A. Safronenkov

Lomonosov Moscow State University

Email: vysogota@gmail.com
Russian Federation, Moscow

G. Kh. Kitaeva

Lomonosov Moscow State University

Email: vysogota@gmail.com
Russian Federation, Moscow

References

  1. Клышко Д.Н. // Квант. электроника. 1980. Т. 7. № 9. С. 1932; Klyshko D.N. // Sov. J. Quantum Electron. 1980. V. 10. № 9. P. 1112.
  2. Малыгин А.А., Пенин А.Н., Сергиенко А.В. // Письма в ЖЭТФ. 1981. Т. 33. № 10. С. 493; Malygin A.A., Penin A.N., Sergienko A.V. // JETP Lett. 1981. V. 33. No. 10. P. 477.
  3. Polyakov S.V., Migdall A.L. // Opt. Express. 2007. V. 15. No. 4. P. 1390.
  4. Исхаков Т.Ш., Лопаева Е.Д., Пенин А.Н. и др. // Письма в ЖЭТФ. 2008. Т. 88. № 10. С. 757; Iskhakov T.S., Lopaeva E.D., Penin A.N. et al. // JETP Lett. 2008. V. 88. No. 10. P. 660.
  5. Brida G., Genovese M., Ruo-Berchera I. et al. // J. Opt. Soc. Amer. B. 2006. V. 23. No. 10. P. 2185.
  6. Brida G., Chekhova M., Genovese M., Ruo-Berchera I. // Opt. Express. 2008. V. 16. No. 17. P. 12550.
  7. Brida G., Chekhova M., Genovese M. et al. // J. Mod. Optics. 2009. V. 56. No. 2—3. P. 401.
  8. Avella A., Ruo-Berchera I., Degiovanni I.P. et al. // Opt. Letters. 2016. V. 41. No. 8. P. 1841.
  9. Chirikov-Zorin I., Fedorko I., Menzione A. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2001. V. 456. P. 310.
  10. Dossi R., Ianni A., Ranucci G., Smirnov O. Ju. // Nucl. Instrum. Meth. Phys. Res. A. 2000. V. 451. P. 623.
  11. Degtiarenko P. // Nucl. Instrum. Meth. Phys. Res. A. 2017. V. 872. P. 1.
  12. Takahashi M., Inome Y., Yoshii S. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2018. V. 894. P. 1.
  13. Cahall C., Nicolich K.L., Islam N.T. et al. // Optica. 2017. V. 4. No. 12. P. 1534.
  14. Endo M., Sonoyama T., Matsuyama M. et al. // Opt. Express. 2021. V. 29. P. 11728.
  15. Prudkovskii P., Leontyev A., Kuznetsov K., Kitaeva G. // Sensors. 2021. V. 21. P. 4964.
  16. Prudkovskii P.A., Safronenkov D.A., Kitaeva G.Kh. // Opt. Letters. 2022. V. 47. № 18. P. 4842.
  17. Sempere-Llagostera S., Thekkadath G.S., Patel R.B. et al. // Opt. Express. 2022. V. 30. P. 3138.
  18. Kalousis L.N. // J. Instrumentation. 2023. V. 18. P. 07016.
  19. Клышко Д.Н. Фотоны и нелинейная оптика. Москва: Наука, 1980.
  20. Федоров М.В. // Изв. РАН. Cер. физ. 2016. Т. 80. № 7. С. 830; Fedorov M.V. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 7. P. 755.
  21. Arahata M., Mukai Y., Cao B. et al // J. Opt. Soc. Amer. B. 2021. V. 38. No. 6. P. 1934.
  22. Resch K.J., Lundeen J.S., Steinberg A.M. // Phys. Rev. A. 2001. V. 63. Art. No. 020102(R).
  23. Kim Y.-H., Grice W.P. // Phys. Rev. A. 2003. V. 67. Art. No. 065802.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the experimental setup: 1 - diode laser with a wavelength of 405 nm; 2 - Faraday insulator; 3 - half-wave plate; 4 - short-wave filter (450 nm); 5, 11 - quartz lenses; 6 - nonlinear BiBO crystal; 7 - long-wave filter (600 nm); 8 - beam splitter; 9, 10 - narrowband filters (800 ± 10 and 840 ± 40 nm), 12, 13 - multimode optical fibre (62.5 and 50 µm); 14, 15 - photodetectors; 16 - electronic registration unit

Download (49KB)
3. Fig. 2. Distributions of the mean value of the photocavity photodetector (a) and photomultiplier tube (b) obtained at different values of the pump laser emission power: 0 (1); 1.2 (2); 3.46 mW (3)

Download (305KB)
4. Fig. 3. The result of approximation of the FES photocurrent distribution at the pump laser power P = 1.2 mW. The contribution to the full distribution of functions corresponding to the registration of different number of single photocounts is shown separately

Download (145KB)
5. Fig. 4. Dependence of the number A of single photocounts of the PES obtained from approximation of the distributions of photocurrent values by formula (4) on the number a of photons falling on the PES obtained by measuring the normalised correlation function of the scattered radiation (points) and the result of its approximation by a linear dependence (solid line)

Download (59KB)

Copyright (c) 2024 Russian Academy of Sciences