Surface segregation in binary metallic nanoparticles: atomistic and thermodynamic simulations

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of molecular dynamics and atomistic simulations demonstrate segregation of Pd atoms to the surface of binary Pt-Pd nanoparticles and the surface segregation of Cr in Ni-Cr nanoparticles. At the same time, molecular dynamics results predict a transition from the surface segregation of Cr to the surface segregation of Ni at low Cr contents in Ni-Cr nanoparticles.

About the authors

V. M. Samsonov

Tver State University

Author for correspondence.
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

A. A. Romanov

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

I. V. Talyzin

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

D. V. Zhigunov

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

V. V. Puitov

Tver State University

Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100

References

  1. Сергеев И.Н., Шебзухов А.А. // Изв. РАН. Сер. физ. 2009. Т. 73. № 11. С. 1632; Sergeev I.N., Shebzukhov A.A. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. No. 11. P. 1532.
  2. Watts B.E. // Process. Appl. Ceram. 2009. V. 3. No. 1—2. P. 97.
  3. Ковалев А.И., Вайнштейн Д.Л., Рашковский А.Ю. // Изв. РАН. Сер. физ. 2016. Т. 80. № 10. С. 1402; Kovalev A.I., Wainstein D.L., Rashkovskiy A.Y. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 10. P. 1253.
  4. Ferrando R., Jellinek J., Johnston R.L. // Chem. Rev. 2008. V. 108. P. 845.
  5. Васильев С.А., Дьякова Е.В., Картошкин А.Ю. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1310; Vasilyev S.A., Dyakova E.V., Kartoshkin A.Y. et al. // Bull. Russ. Acad. Sci. Phys. V. 84. No. 9. P. 1116.
  6. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Appl. Nanosci. 2019. V. 9. No. 1. P. 119.
  7. Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Comp. Mat. Sci. 2021. V. 199. P. 110710.
  8. Sato K., Matsushima Y., Konno T.J. // AIP Advances. 2017. V. 7. Art. No. 065309.
  9. Bohra M., Alman V., Showry A. et al. // ACS Omega. 2020. V. 5. P. 32883.
  10. Samsonov V.M. Romanov A.A., Talyzin I.V. et al. // Metals. 2023. V. 13. Art. No. 1269.
  11. Thompson A.P. // Comput. Phys. Commun. 2022. V. 271. Art. No. 108171.
  12. Samsonov V.M., Romanov A.A., Kartoshkin A.Yu. et al. // Appl. Phys. 2022. V. 128. No. 9. P. 826.
  13. Zhou X.W., Johnson R.A., Wadley H.N.G. // Phys. Rev. B. 2004. V. 69. No. 14. P. 113.
  14. Lin Z., Johnson R.A., Zhigilei L.V. // Phys. Rev. B. 2008. V. 77. P. 214108.
  15. Kaptay G. // Adv. Colloid Interface Sci. 2020. V. 283. P. 102212.
  16. Kaptay G. // J. Mater. Sci. 2016. V. 51. P. 1738.
  17. Tománek D., Mukherjee S., Kumar V. et al. // Surf. Science. 1982. V. 114. P. 11.
  18. Mendoza-Pérez R., Guisbiers G. // Nanotechnology. 2019. V. 30. P. 305702.
  19. Rousset J.L. // Phys. Rev. B. 1998. V. 58. No. 4. P. 2150.
  20. Fiermans L. // J. Catalys. 2000. V. 193. P. 108.
  21. Bernardi F. // J. Phys. Chem. C. 2009. V. 113. No. 10. P. 3909.
  22. Rodríguez-Proenza C., Palomares-Báez J., ChávezRojo M. // Materials. 2018. V. 11. P. 1882.
  23. Чепкасов И.В., Гафнер Ю.Я., Высотин М.А., Редель Л.В. // ФТТ. 2017. Т. 59. № 10. С. 2050; Chepkasov I.V., Gafner Y.Y., Vysotin M.A., Redel L.V. // Phys. Solid State. 2017. V. 59. No. 10. P. 2076.
  24. Ramirez Caballero G.E., Balbuena P.B. // Mol. Simulat. 2006. V. 32. P. 297.
  25. Самсонов В.М., Талызин И.В., Картошкин А.Ю., Самсонов М.В. // Физ. металл. и металловед. 2019. Т. 120. № 6. С. 630; Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Samsonov M.V. // Phys. Metal. Metallogr. 2019. V. 120. No. 6. P. 578.
  26. Samsonov V.M., Talyzin I.V., Puytov V.V. et al. // J. Chem. Phys. 2022. V. 156. No. 21. P. 214302.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences