Surface segregation in binary metallic nanoparticles: atomistic and thermodynamic simulations
- Authors: Samsonov V.M.1, Romanov A.A.1, Talyzin I.V.1, Zhigunov D.V.1, Puitov V.V.1
-
Affiliations:
- Tver State University
- Issue: Vol 88, No 5 (2024)
- Pages: 767-773
- Section: Physics of ferroelectrics
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654683
- DOI: https://doi.org/10.31857/S0367676524050125
- EDN: https://elibrary.ru/QEURVU
- ID: 654683
Cite item
Abstract
The results of molecular dynamics and atomistic simulations demonstrate segregation of Pd atoms to the surface of binary Pt-Pd nanoparticles and the surface segregation of Cr in Ni-Cr nanoparticles. At the same time, molecular dynamics results predict a transition from the surface segregation of Cr to the surface segregation of Ni at low Cr contents in Ni-Cr nanoparticles.
About the authors
V. M. Samsonov
Tver State University
Author for correspondence.
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100
A. A. Romanov
Tver State University
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100
I. V. Talyzin
Tver State University
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100
D. V. Zhigunov
Tver State University
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100
V. V. Puitov
Tver State University
Email: samsonoff@inbox.ru
Russian Federation, Tver, 170100
References
- Сергеев И.Н., Шебзухов А.А. // Изв. РАН. Сер. физ. 2009. Т. 73. № 11. С. 1632; Sergeev I.N., Shebzukhov A.A. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. No. 11. P. 1532.
- Watts B.E. // Process. Appl. Ceram. 2009. V. 3. No. 1—2. P. 97.
- Ковалев А.И., Вайнштейн Д.Л., Рашковский А.Ю. // Изв. РАН. Сер. физ. 2016. Т. 80. № 10. С. 1402; Kovalev A.I., Wainstein D.L., Rashkovskiy A.Y. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 10. P. 1253.
- Ferrando R., Jellinek J., Johnston R.L. // Chem. Rev. 2008. V. 108. P. 845.
- Васильев С.А., Дьякова Е.В., Картошкин А.Ю. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1310; Vasilyev S.A., Dyakova E.V., Kartoshkin A.Y. et al. // Bull. Russ. Acad. Sci. Phys. V. 84. No. 9. P. 1116.
- Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Appl. Nanosci. 2019. V. 9. No. 1. P. 119.
- Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu. et al. // Comp. Mat. Sci. 2021. V. 199. P. 110710.
- Sato K., Matsushima Y., Konno T.J. // AIP Advances. 2017. V. 7. Art. No. 065309.
- Bohra M., Alman V., Showry A. et al. // ACS Omega. 2020. V. 5. P. 32883.
- Samsonov V.M. Romanov A.A., Talyzin I.V. et al. // Metals. 2023. V. 13. Art. No. 1269.
- Thompson A.P. // Comput. Phys. Commun. 2022. V. 271. Art. No. 108171.
- Samsonov V.M., Romanov A.A., Kartoshkin A.Yu. et al. // Appl. Phys. 2022. V. 128. No. 9. P. 826.
- Zhou X.W., Johnson R.A., Wadley H.N.G. // Phys. Rev. B. 2004. V. 69. No. 14. P. 113.
- Lin Z., Johnson R.A., Zhigilei L.V. // Phys. Rev. B. 2008. V. 77. P. 214108.
- Kaptay G. // Adv. Colloid Interface Sci. 2020. V. 283. P. 102212.
- Kaptay G. // J. Mater. Sci. 2016. V. 51. P. 1738.
- Tománek D., Mukherjee S., Kumar V. et al. // Surf. Science. 1982. V. 114. P. 11.
- Mendoza-Pérez R., Guisbiers G. // Nanotechnology. 2019. V. 30. P. 305702.
- Rousset J.L. // Phys. Rev. B. 1998. V. 58. No. 4. P. 2150.
- Fiermans L. // J. Catalys. 2000. V. 193. P. 108.
- Bernardi F. // J. Phys. Chem. C. 2009. V. 113. No. 10. P. 3909.
- Rodríguez-Proenza C., Palomares-Báez J., ChávezRojo M. // Materials. 2018. V. 11. P. 1882.
- Чепкасов И.В., Гафнер Ю.Я., Высотин М.А., Редель Л.В. // ФТТ. 2017. Т. 59. № 10. С. 2050; Chepkasov I.V., Gafner Y.Y., Vysotin M.A., Redel L.V. // Phys. Solid State. 2017. V. 59. No. 10. P. 2076.
- Ramirez Caballero G.E., Balbuena P.B. // Mol. Simulat. 2006. V. 32. P. 297.
- Самсонов В.М., Талызин И.В., Картошкин А.Ю., Самсонов М.В. // Физ. металл. и металловед. 2019. Т. 120. № 6. С. 630; Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Samsonov M.V. // Phys. Metal. Metallogr. 2019. V. 120. No. 6. P. 578.
- Samsonov V.M., Talyzin I.V., Puytov V.V. et al. // J. Chem. Phys. 2022. V. 156. No. 21. P. 214302.
Supplementary files
