Symmetry analysis of Raman spectra of crystals based on angular dependencies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Suggested a method to reconstruct the Raman scattering tensor by studying the angular dependences of Raman line intensities in tiny unoriented microcrystals. The method was verified on well-known calomel Hg2Cl2 model crystals. The spectral line phase-indicators in the Raman spectra reveal different symmetry types of DUT-8 (Ni) metal-organic framework crystals in the open pores and closed pores phases. A technique can be used to reconstruct the Raman scattering tensor of any unoriented crystalline samples.

About the authors

E. V. Golovkina

Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shusy@iph.krasn.ru

Kirensky Institute of Physics

Russian Federation, Krasnoyarsk

S. N. Krylova

Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Email: shusy@iph.krasn.ru

Kirensky Institute of Physics

Russian Federation, Krasnoyarsk

A. N. Vtyurin

Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences; Siberian Federal University

Email: shusy@iph.krasn.ru

Kirensky Institute of Physics

Russian Federation, Krasnoyarsk; Krasnoyarsk

A. S. Krylov

Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: shusy@iph.krasn.ru

Kirensky Institute of Physics

Russian Federation, Krasnoyarsk

References

  1. Zhou H.C., Long J.R., Yaghi O.M. // Chem. Rev. 2012. V. 112. P. 673.
  2. Mingabudinova L.R., Vinogradov V.V., Milichko V.A. et al. // Chem. Soc. Rev. 2016. V. 45. P. 5408.
  3. Zhestkij N.A., Efimova A.S., Kenzhebayeva Y. et al. // Adv. Opt. Mater. 2023. V. 11. No. 22. Art. No. 2300881.
  4. Kulachenkov N.K., Orlioglo B., Vasilyev E.S. et al. // Chem. Commun. 2023. V. 59. P. 9964.
  5. Milichko V.A., Makarov S.V., Yulin A.V. et al. // Adv. Mater. 2017. V. 29. No. 12. Art. No. 1606034.
  6. Kulachenkov N., Barsukova M., Alekseevskiy P. et al. // Nano Lett. 2022. V. 22. No. 17. P. 6972.
  7. Horike S., Shimomura S., Kitagawa S. // Nature Chem. 2009. V. 1. No. 9. P. 695.
  8. Oreshonkov A.S., Gerasimova J.V., Ershov A.A. et al. // J. Raman Spectrosc. 2016. V. 47. No. 5. P. 531.
  9. Pezzotti G. // J. Appl. Phys. 2011. V.110. No. 1. Art. No. 013527.
  10. Munisso M. // Phys. Stat. Sol. B. 2009. V. 246. No. 8. P. 1893.
  11. Fujii Y. // Ferroelectrics. 2014. V. 462. P. 8.
  12. Krylov A., Krylova S., Gudim I. et al. // Magnetochemistry. 2022. V. 8. P. 59.
  13. Chang Y., Xiao A., Li R., et al. // Crystals. 2021. V.11. P. 62
  14. Сущинский М.М. Комбинационное рассеяние света и строение вещества. М: Наука, 1981. 183 с.
  15. Пуле А., Матье Ж.-П. Колебательные спектры и симметрия кристаллов. М: МИР, 1973. 439 с.; Poulet H., Mathieu J.-P. Spectres de vibration et symetrie des cristaux. P: Gordon and Breach, 1970. 438 p.
  16. Munisso M.C., Zhu W., Pezzoti G. // Phys. Stat. Sol. 2009. V. 246. No. 8. P. 1893.
  17. Борн М., Вольф Э. Основы оптики. М: Наука, 1973. 720 с.
  18. Рогинский Е.М., Марков Ю.Ф., Лебедев А.И. // ЖЭТФ. 2019. Т. 155. № 5. C. 855; Roginskii E.M., Markov Yu.F., Lebedev A.I. // JETP. 2019. V. 128. No. 5. P. 727.
  19. Loudon R. // Adv. Phys. 1964. V. 13. P. 423.
  20. Марков Ю.Ф., Рогинский Е.М., Юрков А.С. // ФТТ. 2012. Т. 54. № 6. С. 1197; Markov Yu.F., Roginskii E.M., Yurkov A.S. // Phys. Solid. State. 2012. V. 54. No. 6. P. 1212.
  21. Kaplyanskii A.A. Theory of light scattering in condensed matter. Proc. of the First Joint USA‒USSR Symp. 1976. Ch. 4. P. 31.
  22. Damen T.C., Porto S.P.S., Tell B. // Phys. Rev. 1966. V. 142. P. 570.
  23. Марков Ю.Ф., Рогинский Е.М. // ФТТ. 2009. Т. 51. № 2. С. 282; Markov Yu.F., Roginskii E.M. // Phys. Sol. State. 2009. V. 51. No. 2. P. 298.
  24. Барта Ч., Каплянский А.А., Марков Ю.Ф. // ФТТ. 1973. Т. 15. № 9. С. 2835; Barta Ch., Kaplyanskii A.A., Markov Yu.F. // Phys. Sol. State. 1973. V. 15. No. 9. P. 2835.
  25. Барта Ч., Каплянский А.А., Кулаков В.В., Марков Ю.Ф. // Опт. и спектроск. 1974. № 37. С. 95.
  26. Klein N., Herzog C., Sabo M. et al. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 11778.
  27. Petkov P., Bon V., Hobday C.L. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 674.
  28. Krylov A., Vtyurin A., Petkov P. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. P. 32099.
  29. Krylov A., Yushina I., Slyusareva E. et al. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 3788.
  30. Ehrling S., Senkovska I., Bon V. et al. // J. Mater. Chem. A. 2019. V. 7. P. 21459.
  31. Krylov A., Senkovska I., Ehrling S. et al. // Chem. Commun. 2020. V. 56. P. 8269.
  32. Грибанев Д.А., Рудакова Е.В., Завьялова Е.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. P. 194; Gribanov D.A., Rudakova E.V., Zavialova E.G. // Bull. Russ. Acad. Sci. Ser. Phys. 2023. V. 87. No. 2. P. 165.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences