Computer simulation of the total energy and the shielding function of a carbon molecule in the first order of perturbation theory
- Authors: Koshcheev V.P.1, Shtanov Y.N.2
-
Affiliations:
- National Research University (Moscow Aviation Institute), Strela Branch
- Tyumen Industrial University, Surgut Branch
- Issue: Vol 88, No 4 (2024)
- Pages: 524-530
- Section: Ion-Surface Interactions
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654696
- DOI: https://doi.org/10.31857/S0367676524040013
- EDN: https://elibrary.ru/QJAJSF
- ID: 654696
Cite item
Abstract
Within the framework of a new approach to the problem of calculating the total energy of a diatomic molecule in the first order of perturbation theory, it is shown that the potential energy screening function is a solution to a diffusion-type equation in which the role of a time variable is played by the average square of the amplitude of collective oscillations of electrons per one degree of freedom. The total energy of two carbon atoms in the ground and excited states is calculated.
About the authors
V. P. Koshcheev
National Research University (Moscow Aviation Institute), Strela Branch
Author for correspondence.
Email: koshcheev1@yandex.ru
Russian Federation, Zhukovsky, 140180
Yu. N. Shtanov
Tyumen Industrial University, Surgut Branch
Email: koshcheev1@yandex.ru
Russian Federation, Surgut, 628404
References
- Ren W., Fu W., Wu X., Chen J. // Nature Commun. 2023. V. 14. No. 1. P. 1860.
- Qian Y., Fu W., Ren W., Chen J. // J. Chem. Phys. 2022. V. 157. No. 16. Art. No. 164104.
- Barrett T.D., Malyshev A., Lvovsky A.I. // Nature Mach. Intell. 2022. V. 4. No. 4. P. 351.
- Сарры А.М., Сарры М.Ф. // ФТТ. 2012. Т. 54. № 6. С. 1237; Sarry A.M., Sarry M.F. // Phys. Solid State. 2012. V. 54. No. 6. P. 1315.
- Wang Z., Neese F. // J. Chem. Phys. 2023. V. 158. No. 18. Art. No. 184102.
- Кощеев В.П., Штанов Ю.Н. // Письма в ЖТФ. 2022. Т. 48. № 10. С. 28; Koshcheev V.P., Shtanov Y.N. // Tech. Phys. Lett. 2022. V. 48. No. 10. P. 123.
- Кощеев В.П., Штанов Ю.Н. // Поверхность. Рентген. синхротр. и нейтрон. исслед.2023. № 3. С. 69.
- Дирак П.А.М. Принципы квантовой механики. М.: Наука, 1979. 479 с.
- Ландау Л.Д., Лифшиц Е.М. Квантовая механика (нерелятивистская теория). М.: Наука, 1974. 752 с.
- Бете Г. Квантовая механика. М.: Мир, 1965. 333 с.
- Лифшиц Е.М., Питаевский Л.П., Физическая кинетика. М.: Физматлит, 2007. 536 с.
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 733 с.
- Кощеев В.П., Штанов Ю.Н. // Письма в ЖТФ. 2018. Т. 44. № 13. С. 28; Koshcheev V.P., Shtanov Y.N. // Tech. Phys. Lett. 2018. V. 44. No. 13. P. 566.
- Clementi E., Roetti C. // Atom. Data Nucl. Data Tables. 1974. V. 14. No. 3. P. 177.
- Lie G.C., Clementi E. // J. Chem. Phys. 1974. V. 60. P. 1288.
- http://wwwinfo.jinr.ru/programs/jinrlib/tropics/index.html.
Supplementary files
