Radio-frequency ion thruster with magnetic shielding of the discharge chamber walls
- Authors: Abgaryan V.K.1, Demchenko D.S.1, Melnikov A.V.1, Peisakhovich O.D.1
-
Affiliations:
- Moscow Aviation Institute (National Research University)
- Issue: Vol 88, No 4 (2024)
- Pages: 584-590
- Section: Ion-Surface Interactions
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654704
- DOI: https://doi.org/10.31857/S0367676524040091
- EDN: https://elibrary.ru/QIFXQP
- ID: 654704
Cite item
Abstract
We presented the results of a computational study on optimizing the shape of the main elements of a radio-frequency ion thruster – the discharge chamber and the ion-extraction system grids. The possibility of improving the integral characteristics of thrusters and ion sources due to the use of an additional magnetostatic field in the RF discharge region was considered. The performed series of calculations made it possible to determine the optimal geometry of the discharge chamber and of the RIT ion-extraction system grids, as well as the configuration of the additional magnetic field, at which the best values of the integral characteristics were achieved.
About the authors
V. K. Abgaryan
Moscow Aviation Institute (National Research University)
Email: melnikov.andrey.sp@yandex.ru
Research Institute of Applied Mechanics and Electrodynamics
Russian Federation, Moscow, 125080D. S. Demchenko
Moscow Aviation Institute (National Research University)
Email: melnikov.andrey.sp@yandex.ru
Research Institute of Applied Mechanics and Electrodynamics
Russian Federation, Moscow, 125080A. V. Melnikov
Moscow Aviation Institute (National Research University)
Author for correspondence.
Email: melnikov.andrey.sp@yandex.ru
Научно-исследовательский институт прикладной механики и электродинамики
Russian Federation, Moscow, 125080O. D. Peisakhovich
Moscow Aviation Institute (National Research University)
Email: melnikov.andrey.sp@yandex.ru
Research Institute of Applied Mechanics and Electrodynamics
Russian Federation, Moscow, 125080References
- http://archive.satcomrus.ru/2022/presentations/5_%20%D0%A3%D1%80%D0%BB%D0%B8%D1%87%D0%B8%D1%87_27102022.pdf.
- Важенин Н.А., Обухов В.А., Плохих А.П., Попов Г.А. Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи. М: Физматлит, 2013. 432 с.
- Горшков О.А., Муравлев В.А., Шагайда А.А. Холловские и ионные плазменные двигатели для космических аппаратов. М.: Машиностроение, 2008. 278 с.
- Антропов Н.Н., Ахметжанов Р.В., Богатый А.В. и др. // Изв. РАН. Энергетика. 2016. № 2. С. 4.
- Abgaryan V.K., Kruglov K.I., Mogulkin A.I. et al. // J. Surface Inv. 2017. V. 11. No. 6. P. 1239.
- Abgaryan V.K., Riaby V.A., Yamashev G.G. // J. Surface Inv. 2017. V. 11. No. 5. P. 1008.
- Kanev S., Melnikov A., Nazarenko I., Khartov S. // IOP Conf. Ser. Mater. Sci. Eng. 2020. V. 868. Art. No. 012010.
- Leiter H.J., Loeb H.W., Schartner K.H. // Proc. 3rd Int. Conf. Spacecraft Propulsion (Cannes, 2000). P. 423.
- Walther R., Geisel J., Pinks W. et al. // Proc. 11th Elect. Propulsion Conf. (New Orleans, 1975). Art. No. AIAA-75–367.
- Tsay M.M.T. Two-dimensional numerical modeling of radio-frequency ion engine discharge. PhD thesis. Massachusetts Institute of Technology, 2010.
- Абгарян В.К., Мельников А.В., Купреева А.Ю., Пейсахович О.Д. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 5. C. 103.
- Melnikov A.V., Khartov S.A. // Thermal Eng. 2018. V. 65. No. 13. P. 980.
- Кожевников В.В., Мельников А.В., Назаренко И.П., Хартов С.А. // Изв. РАН. Энергетика. 2019. № 3. С. 40.
- Арцимович Л.А. Управляемые термоядерные реакции. М.: Физматлит, 1961. 467 с.
- https://www.comsol.com.
- Григорьян В.Г., Демидов А.С., Хартов С.А. Расчет и конструкция электроракетных двигателей: Уч. пособие. М.: Изд-во МАИ-ПРИНТ, 2011. 88 с.
Supplementary files
