Study of the physical properties of piezoelectric polyvinylidene fluoride – lead zirconate-titanate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We examined the impact of the percentage of lead zirconate-titanate microparticles as a filler in a polyvinylidene fluoride-based composite material on its mechanical, piezoelectric, and structural properties. Our findings revealed that the incorporation of 10% lead zirconate titanate particles resulted in an enhanced piezoelectric response due to a significant increase in the degree of polymer crystallinity for this concentration on the condition of conservation of the ultimate stresses value of the material in the acceptable range for the implementation of mechanical stress sensors.

About the authors

V. V. Savin

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children

Author for correspondence.
Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041; Ushakovo, 238322

M. A. Keruchenko

Immanuel Kant Baltic Federal University; Center for Development of Gifted Children; Lyceum No. 23, Kaliningrad

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041; Ushakovo, 238322; Kaliningrad, 236000

P. A. Ershov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

P. A. Vorontsov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

A. A. Ignatov

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

V. V. Rodionova

Immanuel Kant Baltic Federal University

Email: savin_vv@bk.ru
Russian Federation, Kaliningrad, 236041

References

  1. Omelyanchik A., Antipova V., Gritsenko C. et al. // Nanomaterials. 2021. V. 5. No. 11. P. 1154.
  2. Xia W., Zhang Z. // IET Nanodielectr. 2018. V. 1. No. 1. P. 17.
  3. Du X., Zhou Z., Zhang Z. et al. // J. Adv. Ceram. 2022. V. 11. No. 2. P. 331.
  4. Pei J., Zhao Z., Li X. et al. // Mater. Exp. 2017. No. 3 (7). P. 180.
  5. Yuan C.X., Zhang C., Xiao et al. // Ceram. Int. 2023. V. 49. No. 17A. P. 28474.
  6. Asghar A.H., Qaseem A., Alam W., Akhtar M. // Proc. IBCAST 2022. (Murree Hills, 2022). P. 1.
  7. Li S., Bhalla A., Newnham R. Cross L. // Mater. Lett. 1993. V. 1–2. No. 17. P. 21.
  8. Sobolev K., Kolesnikova V., Omelyanchik A. et al. // Polymers. 2022. V. 14. P. 4807.
  9. Maccone P., Brinati G., Arcella V. // Polymer Eng. Sci. 2000. V. 40. No. 3. P. 761.
  10. Zhang Y., Xue D., Wu H. et al. // Acta Mater. 2014. V. 71. P. 176.
  11. Janakiraman S., Surendran A., Ghosh S. et al. // Solid State Ion. 2016. V. 292. No. 9. P. 130.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences