Study of magnetic and optical properties of Ni@Au nanotubes for local anti-cancer therapy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The magnetic and optical properties of gold-coated nickel nanotubes obtained by template synthesis have been studied. A change in the relative intensity of an optical beam passing through a solution of nanotubes in a magnetic field perpendicular and parallel to the beam propagation shows the possibility of orienting nanotubes along the magnetic field. The results provide an assessment of the applicability of such nanotubes in combined photothermal and magnetomechanical anticancer therapy.

About the authors

A. A. Anikin

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: anikinanton93@gmail.com
Russian Federation, Kaliningrad, 236041

E. E. Shumskaya

Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus

Email: anikinanton93@gmail.com
Belarus, Minsk, 220141

S. A. Bedin

Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences”

Email: anikinanton93@gmail.com
Russian Federation, Moscow, 119333

I. M. Doludenko

Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences”

Email: anikinanton93@gmail.com
Russian Federation, Moscow, 119333

D. R. Khairetdinova

National University of Science and Technology “MISIS”

Email: anikinanton93@gmail.com
Russian Federation, Moscow, 119049

V. K. Belyaev

Immanuel Kant Baltic Federal University

Email: anikinanton93@gmail.com
Russian Federation, Kaliningrad, 236041

V. V. Rodionova

Immanuel Kant Baltic Federal University

Email: anikinanton93@gmail.com
Russian Federation, Kaliningrad, 236041

L. V. Panina

Immanuel Kant Baltic Federal University; National University of Science and Technology “MISIS”

Email: anikinanton93@gmail.com
Russian Federation, Kaliningrad, 236041; Moscow, 119049

References

  1. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J.P. // J. Phys. D. 2003. V. 36. No. 13. P. R167.
  2. Dutz S., Hergt R. // Nanotechnology. 2014. V. 25. No. 45. P. 452001.
  3. Oliveira H., Perez‐Andres E., Thevenot J. // J. Control. Release. 2013. V. 169. P. 165.
  4. Janssen X.J.A., Schellekens A.J., Van Ommering K. et al. // Biosens. Bioelectron. 2009. V. 24. No. 7. P. 1937.
  5. Maniotis N., Makridis A., Myrovali E. et al. // J. Magn. Magn. Mater. 2019. V. 470. P. 6.
  6. Novosad V., Rozhkova E.A. // Biomed. Engin. Trends Mater. Sci. 2011. P. 425.
  7. Shen Y., Wu C., Uyeda T.Q.P. et al. // Theranostics. 2017. V. 7. No. 6. P. 1735.
  8. Fung A.O., Kapadia V., Pierstorff E. et al. // J. Phys. Chem. C. 2008. V. 112. No. 39. P. 15085.
  9. Martínez-Banderas A.I., Aires A., Teran F.J. et al. // Sci. Reports. 2016. V. 6. No. 1. P. 35786.
  10. Загорский Д.Л., Долуденко И.М., Каневский В.М. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 8. С. 10; Zagorskiy D.L., Doludenko I.M., Kanevsky V.M. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 8. P. 1090.
  11. Shumskaya A., Bundyukova V., Kozlovskiy A. et al. // J. Magn. Magn. Mater. 2020. V. 497. P. 165913.
  12. Zagorskiy D., Doludenko I., Zhigalina O. et al. // Membranes. 2022. V. 12. No. 2. P. 195.
  13. Kozlovskiy A.L., Korolkov I.V., Kalkabay G. et al. // J. Nanomaterials. 2017. V. 2017. P. 1.
  14. Shumskaya A., Korolkov I., Rogachev A. et al. // Colloids Surf. A. 2021. V. 626. P. 127077.
  15. Kaniukov E.Yu., Shumskaya E.E., Kutuzau M.D. et al. // Devices Meth. Measurements. 2017. V. 8. No. 3. P. 214.
  16. Espinosa A., Kolosnjaj‐Tabi J., Abou‐Hassan A. et al. // Adv. Funct. Materials. 2018. V. 28. Art. No. 1803660.
  17. Hemmer E., Benayas A., Légaré F., Vetrone F. // Nanoscale Horiz. 2016. V. 1. No. 3. P. 168.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences