Modification of auroral kilometric radiation spectra caused propagation in inhomogeneous cosmic plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have analyzed characteristics of electric components of the auroral kilometric radiation (AKR) detected onboard of two satellites, in the Earth’s inner magnetosphere (ERG) and in the solar wind (WIND). It is shown that spectra are modified as the result of AKR the propagation in plasma channels — high frequencies are suppressed. The computer simulation confirms experiments.

Full Text

Restricted Access

About the authors

V. I. Kolpak

Space Research Institute of the Russian Academy of Sciences; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Author for correspondence.
Email: lera.kolpak@yandex.ru
Russian Federation, Moscow; Moscow

M. M. Mogilevsky

Space Research Institute of the Russian Academy of Sciences

Email: lera.kolpak@yandex.ru
Russian Federation, Moscow

D. V. Chugunin

Space Research Institute of the Russian Academy of Sciences

Email: lera.kolpak@yandex.ru
Russian Federation, Moscow

A. A. Chernyshov

Space Research Institute of the Russian Academy of Sciences

Email: lera.kolpak@yandex.ru
Russian Federation, Moscow

I. L. Moiseenko

Space Research Institute of the Russian Academy of Sciences

Email: lera.kolpak@yandex.ru
Russian Federation, Moscow

References

  1. Бенедиктов Е.А., Гетманцев Г.Г., Митяков Н.А. и др. // В кн: Исследования космического пространства. М.: Наука, 1965.
  2. Gurnett D.A. // J. Geophys. Res. 1974. V. 79. No. 28. P. 4227.
  3. Wu C.S., Lee L.C. // Astrophys. J. 1979. V. 230. P. 621.
  4. Baumjohann W., Treumann R.A. // Front. Astron. Space Sci. 2022. V. 9. Art. No. 1053303.
  5. Louarn P., Le Quéau D. // Planet. Space Sci. 1996. V. 44. No. 3. P. 211.
  6. Буринская Т.М., Рош Ж.Л. // Физика плазмы. 2007. Т. 33. № 1. С. 28.
  7. Могилевский М.М., Романцова Т.В., Ханаш Я. и др. // Письма в ЖЭТФ. 2007. Т. 86. № 11. С. 819; Mogilevsky M.M., Romantsova T.V., Hanasz J. et al. // JETP Lett. 2007. V. 86. No. 11. P. 819.
  8. Calvert W. // Geophys. Res. Lett. 1982. V. 9. No. 1. P. 56.
  9. Могилевский М.М., Чугунин Д.В., Чернышов А.А. и др. // Письма в ЖЭТФ. 2022. Т. 115. № 10. С. 636; Mogilevsky M.M., Chugunin D.V., Chernyshov A.A. // JETP Lett. 2022. V. 115. No. 10. P. 636.
  10. Miyoshi Y., Shinohara I., Takashima T. et al. // Earth Planets Space. 2018. V. 70. No. 1. Art. No. 101.
  11. Miyoshi Y., Hori T., Shoji M. et al. // Earth Planets Space. 2018. V. 70. No. 1. Art. No. 96.
  12. Kumamoto A., Tsuchiya F., Kasahara Y. et al. // Earth Planets Space. 2018. V. 70. No. 1. Art. No. 82.
  13. Kasahara Y., Kasaba Y., Kojima H. et al. // Earth Planets Space. 2018. V. 70. No. 1. Art. No. 86.
  14. Колпак В.И., Могилевский М.М., Чугунин Д.В. и др. // Солн.-земн. физ. 2021. Т. 7. № 1. С. 13; Kolpak V.I., Mogilevsky M.M., Chugunin D.V. et al. // Solar-Terr. Phys. 2021. V. 7. No. 1. P. 11.
  15. Чернышов А.А., Могилевский М.М., Чугунин Д.В., Колпак В.И. // Изв. РАН. 2022. Т. 86. № 3. С. 370; Chernyshov A.A., Mogilevsky M.M., Chugunin D.V., Kolpak V.I. // Bull. Russ. Acad. Sci.: Phys. 2022. V. 86. No. 3. P. 295.
  16. Bougeret J.L., Kaiser M.L., Kellogg P.J. et al. // Space Sci. Rev. 1995. V. 71. P. 231.
  17. Ландсберг Г.С. Оптика. М.: Физматлит, 2003. 848 с.
  18. Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967. С. 684.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Simultaneous measurements of the mean radiative power (averaged over F frequencies): from 56 to 596 kHz for WIND with a 60 s step, from 54.9 to 596 kHz for ERG with an 8 s step. The measurements were performed on 02.05.2019 on two satellites: from 9:36 to 13:26, on board the WIND satellite (upper panel) and on board the ERG satellite (lower panel)

Download (311KB)
3. Fig. 2. Schematic of the mutual location of the ACR source and the ERG and WIND satellites during the measurements on 07.03.2019 and 02.05.2019 (a). The view of the ecliptic plane from the (-ZGSE) side is presented. 07.03.2019 coordinates for the ERG satellite: X = -0.6; Y = 3.3; Z = 0.4; for the WIND satellite: X = 256; Y = -42; Z = 8.8 (in the GSE system, in RE units). 02.05.2019 coordinates for the ERG satellite: X = -3.3; Y = -1.7; Z = 0.6; for the WIND satellite: X = 205; Y = -71; Z = 1.5. Schematic of radiation capture into the plasma channel (b): 1 - force line on which the ACR source is located; 2 - plasma channel stretched along the magnetic field force line; 3 - illumination region of the channel end for frequencies f1 ≤ f ≤ f2; 4 - area of illumination for frequencies f2 ≤ f ≤ f ≤ f3; 5 - area of illumination for frequencies higher than f3; f1, f2, f3 - ACR frequencies, where f1 > f2 > f3; - solution of the ACR radiation cone; N1 - plasma density outside the channel; N2 - plasma density in the channel. The arrows show the propagation of radiation from the source and in the channel

Download (129KB)
4. Fig. 3. ACR spectra recorded on 07.03.2019 at 17:00:30 on the WIND (upper panel) and ERG (lower panel) satellites

Download (169KB)
5. Fig. 4. Results of calculation of the reflection coefficients from the channel wall (for the case (N1 - N2) / N1 = 0.67) for three angles: 85° (solid line), 80° (dotted line), 75° (dashed line)

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences