The expected characteristics of the Cherenkov telescope TAIGA-IACT equipped with SiPM detectors

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Monte-Carlo modeling of effective area and count rate of the TAIGA-IACT Cherenkov gamma-ray telescope unit with an upgraded camera based on SiPM OnSemi MicroFJ-60035 detectors and optical filters SL 290-590 and SL 290-590 has been carried out. It has been shown that with the SL 290-590 filter the threshold detection energy of the telescope would be improved compared with its current PMT-based configuration and would reach about 0.4 TeV. With the narrow band UV filter SL 290-590 the estimated threshold would reach about 0.7 TeV, which is a reasonable value for a 10 m2 class IACT, especially because with a SiPM-based telescope it will be possible to carry out observations during moonlit nights and at twilight without a substantial increase of the threshold. One may conclude that an upgraded TAIGA-IACT unit will be an efficient instrument for studies of TeV-band gamma-ray emission of various cosmic objects.

Full Text

Restricted Access

About the authors

E. E. Kholupenko

Ioffe Institute

Author for correspondence.
Email: eugene@astro.ioffe.ru
Russian Federation, Saint Petersburg

A. M. Krasilschikov

Ioffe Institute

Email: eugene@astro.ioffe.ru
Russian Federation, Saint Petersburg

D. V. Badmaev

Ioffe Institute

Email: eugene@astro.ioffe.ru
Russian Federation, Saint Petersburg

A. A. Bogdanov

Ioffe Institute

Email: eugene@astro.ioffe.ru
Russian Federation, Saint Petersburg

References

  1. Буднев Н.М., Иванова А.Л., Калмыков Н.Н. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 3. С. 430; Budnev N.M., Ivanova A.L., Kalmykov N.N. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 3. P. 395.
  2. Астапов И.И., Барбашина Н.С., Богданов А.Г. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 4. С. 495; Astapov I.I., Barbashina N.S., Bogdanov A.G. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 4. P. 460.
  3. Бородин А.Н., Гребенюк В.М., Гринюк А.А. и др. // Изв. РАН. Сер. физ. 2019. T. 83. № 8. С. 1042; Borodin A.N., Grebenyuk V.M., Grinyuk A.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 945.
  4. Просин В.В., Астапов И.И., Безъязыков П.А. и др. // Изв. РАН. Сер. физ. 2021. T. 85. № 4. С. 525; Prosin V.V., Astapov I.I., Bezyazeekov P.A. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 395.
  5. Безъязыков П.А., Буднев Н.М., Гресс О.А. и др. // Изв. РАН. Сер. физ. 2019. T. 83. № 8. С. 1099; Bezyazeekov P.A., Budnev N.M., Chernykh D.O. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 998.
  6. Кузьмичев Л.А., Астапов И.И., Безъязыков П.А. и др. // Ядерн. физика. 2018. Т. 81. № 4. С. 469; Kuzmichev L.A., Astapov I.I., Bezyazeekov P.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 4. P. 497.
  7. Bogdanov A.A., Tuboltsev Y.V., Chichagov Y.V. et al. // J. Phys. Conf. Ser. 2020. V. 1697. No. 1. Art. No. 012015.
  8. Богданов А.А., Тубольцев Ю.В., Чичагов Ю.В. и др. // ЖТФ. 2021. Т. 91. № 5. С. 821; Bogdanov A.A., Tubol’tsev Y.V., Chichagov Y.V. et al. // J. Tech. Phys. 2021. V. 66. No. 5. P. 699.
  9. Bogdanov A.A., Tuboltsev Y.V., Chichagov Y.V. et al. // J. Phys. Conf. Ser. 2021. V. 2103. No. 1. Art. No. 012026.
  10. Kuleshov D.O., Simonyan V.A., Bogdanov A.A. et al. // J. Phys. Conf. Ser. 2021. V. 2103. No. 1. Art. No. 012036.
  11. Bogdanov A.A., Repman G.A., Tubol’tsev Y.V. et al. // St. Petersburg State Polytechn. Univ. J. Phys. Math. 2023. V. 16. No. 1.2. P. 410.
  12. Bogdanov A.A., Kholupenko E.E., Tuboltsev Y.V., Chichagov Y.V. // Latv. J. Phys. Tech. Sci. 2020. V. 57. No. 1-2. P. 13.
  13. Антонов А.С., Богданов А.А., Красильщиков А.М., Холупенко Е.Е. // ЖТФ. 2021. Т. 91. № 11. С. 1601.
  14. Холупенко Е.Е., Красильщиков А.М., Бадмаев Д.В. и др. // ЖТФ. 2020. Т. 90. № 6. С. 925; Kholupenko E.E., Krassilchtchikov A.M., Badmaev D.V. et al. // Tech. Phys. 2020. V. 65. No. 6. P. 886.
  15. Холупенко Е.Е., Бадмаев Д.В., Антонов А.С. и др. // ЖТФ. 2021. Т. 91. № 12. С. 1930; Kholupenko E.E., Badmaev D.V., Antonov A.S. et al. // Tech. Phys. 2022. V. 67. No. 2. P. 80.
  16. Heck D., Knapp J., Capdevielle J.N. et al. CORSIKA: a Monte Carlo code to simulate extensive air showers. Karlsruhe: Forschungszentrum Karlsruhe GmbH, 1998.
  17. Leinert C., Bowyer S., Haikala L.K. et al. // Astron. Astrophys. Suppl. 1998. V. 127. P. 1.
  18. Benn C.R., Ellison S.L. // New Astron Rev. 1998. V. 42. No. 6—8. P. 503.
  19. Mikhalev A.V., Medvedeva I.V., Beletsky A.B., Kazimirovsky E.S. // J. Atmos. Sol-Terr. Phys. 2001. V. 63. No. 9. P. 865.
  20. Mirzoyan R., Lorenz E. // Int. Rep. HEGRA collaboration. MPI-PhE/94-35, 1994.
  21. Budnev N., Astapov I., Bezyazeekov P. et al. // J. Phys. Conf. Ser. 2016. V. 718. No. 5. Art. No. 052006.
  22. Забудько М.А. Спецификации фильтров SL 280-390 и SL 290-590. ФОТООПТИК, 2021.
  23. https://www.onsemi.com/pub/Collateral/MICROJ-SERIES-D.PDF.
  24. Alfaro R., Alvarez C., Alvarez J.D. et al. // Phys. Rev. D. 2017. V. 96. No. 12. P. 122001.
  25. Nigro C., Deil C., Zanin R. et al. // Astron. Astrophys. 2019. V. 625. Art. No. A10.
  26. Abeysekara A.U., Albert A., Alfaro R. et al. // Astrophys. J. 2019. V. 881. No. 2. P. 134.
  27. Tluczykont M., Budnev N., Astapov I. et al. // Proc. Magellan Workshop: Connecting Neutrino Physics and Astronomy, Deutsches Elektronen-Synchrotron, DESY: Magellan Workshop (Hamburg, 2016). P. 1.
  28. Knoetig M.L., Biland A., Bretz T. et al. // Proc. 33th ICRC. 2013. V. 33. P. 1132.
  29. Griffin S., VERITAS Collaboration // Proc. 34th ICRC. 2015. V. 34. P. 989.
  30. Guberman D., Cortina J., Garcia R. et al. // Proc. 34th ICRC. 2015. V. 34. P. 1237.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the profiles on the wavelength: 1 - average spectrum of Cherenkov radiation from the SHAL caused by a gamma-quantum with an energy of 1 TeV, normalised by 100% at the maximum at a wavelength of ≈330 nm (curve of long dashes); 2 - an example of a specific realisation of the spectrum of the night sky background (normalised by 100% at the maximum at a wavelength of ≈557 nm) modelled by the Monte Carlo method (curve of short dashes); 3 - photon detection efficiency of OnSemi MicroFJ-60035 SiPM (solid curve); 4 - transmission coefficient of SL 290-590 filter (dashed curve); 5 - transmission coefficient of SL 280-390 filter (dashed curve with two dots)

Download (224KB)
3. Fig. 2. Dependences of effective areas on the primary particle energy obtained by the Monte Carlo method are shown by symbols, the corresponding approximations - by curves. Squares and solid curve correspond to the results for gamma rays using the SL 290-590 filter. Rhombuses and dashed curve correspond to the results for CL protons when using the SL 290-590 filter. The upward pointing triangles and the dashed curve correspond to the results for gamma rays when using the SL 280-390 filter. The triangles pointing downwards and the dashed curve correspond to the results for CL protons using the SL 280-390 filter

Download (154KB)

Copyright (c) 2024 Russian Academy of Sciences