W-band phase shifter based on metasurface with built-in pin diodes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose a design and show the numerical simulation results for a W-band (75–110 GHz) phase shifter. The structure of the phase shifter consists of periodic array of rectangular patch antennas on a dielectric substrate with built-in pin-diodes. The calculations demonstrate the possibility of achieving a phase shift of the transmitted wave up to 87° at a frequency of 96 GHz with transmittance losses of –7 dB.

Full Text

Restricted Access

About the authors

A. S. Kazakov

Moscow Institute of Physics and Technology; Lomonosov Moscow State University

Author for correspondence.
Email: askazakov@physics.msu.ru
Russian Federation, Dolgoprudny; Moscow

P. A. Gusikhin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
Russian Federation, Chernogolovka

I. V. Andreev

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
Russian Federation, Chernogolovka

V. M. Muravyov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
Russian Federation, Chernogolovka

I. V. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
Russian Federation, Chernogolovka

References

  1. Dang S., Amin O., Shihada B. et al. // Nature Electron. 2020. V. 3. No. 1. P. 20.
  2. Rasilainen K., Phan T.D., Berg M. et al. // IEEE J. Sel. Areas Commun. 2020. V. 41. No. 8. P. 2530.
  3. Fu X., Yang F., Liu C. et al. // Adv. Opt. Mater. 2019. V. 8. No. 3. Art. No. 1900628.
  4. Guo Y., Guo Y., Li C. et al. // Appl. Sciences. 2021. V. 11. No. 9. P. 4017.
  5. Rice M. Digital communications: a discrete-time approach. Pearson Prentice Hall, 2009. 796 с.
  6. Веселаго В.Г. // УФН. 1967. Т. 92. № 7. С. 517.
  7. Smith D.R., Pendry J.B., Wiltshire M.C.K. // Science. 2004. V. 305. No. 5685. P. 788.
  8. Shalaev V.M. // Nature Photon. 2007. V. 1. No. 1. P. 41.
  9. Кильдишев А.В., Шалаев В.М. // УФН. 2011. T. 181. № 1. С. 59; Kildishev A.V., Shalaev V.M. // Phys. UsP. 2011. V. 54. No. 1. P. 53.
  10. Holloway C.L., Kuester E.F., Gordon J.A. et al. // IEEE Antennas Propag. Mag. 2012. V. 54. No. 2. P. 10.
  11. Yu N., Capasso F. // Nature Mater. 2014. V. 13. No. 2. P. 139.
  12. Yu Y.F., Zhu A.Y., Paniagua‐Domínguez R. et al. // Laser Photon. Rev. 2015. V. 9. No. 4. P. 412.
  13. Chen H.T., Taylor A.J., Yu N. // Rep. Prog. Phys. 2016. V. 79. No. 7. Art. No. 076401.
  14. Ремнев М.А., Климов В.В. // УФН. 2018. Т. 188. № 2. С. 169; Remnev M.A., Klimov V.V. // Phys. Usp. 2018. V. 61. No. 2. P. 157.
  15. Yu N., Genevet P., Kats M.A. et al. // Science. 2011. V. 334. No. 6054. P. 333.
  16. Pfeiffer C., Grbic A. // Phys. Rev. Lett. 2013. V. 110. No. 19. Art. No. 197401.
  17. Decker M., Staude I., Falkner M. et al. // Adv. Opt. Mater. 2015. V. 3. No. 6. P. 813.
  18. Chen M., Kim M., Wong A.M. et al. // Nanophotonics. 2018. V. 7. No. 6. P. 1207.
  19. Yu N., Aieta F., Genevet P. et al. // Nano Lett. 2012. V. 12. No. 12. P. 6328.
  20. Sun S., Yang K.Y., Wang C.M. et al. // Nano Lett. 2012. V. 12. No. 12. P. 6223.
  21. Pors A., Albrektsen O., Radko I.P. et al. // Sci. Reports. 2013. V. 3. No. 1. P. 2155.
  22. Huang L., Chen X., Muhlenbernd H. // Nano Lett. 2012. V. 12. No. 11. P. 5750.
  23. Sun S., He Q., Hao J. et al. // Adv. Opt. Photon. 2019. V. 11. No. 2. P. 380.
  24. Yang F., Pitchappa P., Wang N. // Micromachines. 2022. V. 13. No. 2. P. 285.
  25. Zeng H., Gong S., Wang L. // Nanophotonics. 2021. V. 11. No. 3. P. 415.
  26. Sievenpiper D.F., Schaffner J.H., Song H.J. et al. // IEEE Antennas Propag. Mag. 2003. V. 51. No. 10. P. 2713.
  27. Parlak M., Buckwalter J.F. // IEEE Microw. Wirel. Compon. Lett. 2010. V. 20. No. 11. P. 631.
  28. Zhang Y., Zhao Y., Liang S. et al. // Nanophotonics. 2018. V. 8. No. 1. P. 153.
  29. Zhang Y., Qiao S., Liang S. et al. // Nano Lett. 2015. V. 15. No. 5. P. 3501.
  30. Cui T.J., Qi M.Q., Wan X. et al. // Light Sci. Appl. 2014. V. 3. No. 10. P. 218.
  31. Pan X., Yang F., Xu S., Li M. // Proc. IEEE Ap-S/URSI (San Diego, 2017). P. 2055.
  32. Pan X., Wang S., Li G. et al. // Proc. IEEE MTT-S IWS (Chengdu, 2018). P. 1.
  33. Chieh J.C.S., Rowland J., Sharma S. // Electron. Lett. 2018. V. 54. No. 17. P. 1040.
  34. Chaimool S., Hongnara T., Rakluea C. et al. // Int. J. Antennas Propag. 2019. V. 2019. Art. No. 7216324.
  35. Zhang Z., Lan F., Mazumder P. et al. // Proc. IEEE PIERS-Fall (Rome, 2019). P. 3232.
  36. Al-Tag A.A., Al-mahdi R.M., Al-hedari et al. // Proc. eSmarTA2022 (Ibb, 2022). P. 1.
  37. Montori S., Chiuppesi E., Farinelli P. et al. // Int. J. Microw. Wirel. Technol. 2011. V. 3. No. 5. P. 521.
  38. Perez-Palomino G., Barba M., Encinar J.A. et al. // IEEE Antennas Propag. Mag. 2015. V. 63. No. 8. P. 3722.
  39. Gaebler A., Moessinger A., Goelden F. et al. // Int. J. Antennas Propag. 2009. V. 2009. Art. No. 876989.
  40. Levin B.J., Weidner G.G. // Proc. IEEE G-MTT Int. Microw. Symp. (Boulder, 1973). P. 65.
  41. Nguyen C., Yen P. // Proc. IEEE16th EuMC1986. (Dublin, 1986). P. 133.
  42. Stephan K.D., Goldsmith P.F. // Proc. IEEE MTT-S Microw. Symp. Digest (Albuquerque, 1992). P. 591.
  43. Lowe K., Lynch D.D., Panaretos S. et al. Diode patch phase shifter insertable into a waveguide. US Patent No. 5170140. 1992.
  44. Dzhikirba K.R., Shuvaev A., Khudaiberdiev D. et al. // Appl. Phys. Lett. 2023. V. 123. No. 5. Art. No. 052104.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the general structure of the phase-shifting element, which is a lattice array of 20 metal patch antennas separated by slits with characteristic size g = 30 μm (a); scheme of pin-diodes inclusion in the structure in the region of the slot between neighbouring metal patches (b)

Download (279KB)
3. Fig. 2. Dependences of the real (a) and imaginary (b) parts of the effective impedance of the phase-shifting element on frequency for different pin-diode differential resistances

Download (165KB)
4. Fig. 3. Dependences of the phase element transmission coefficient (a) and phase shift of the passed electromagnetic wave (b) on frequency at different pin-diode resistances

Download (181KB)
5. Fig. 4. Dependence of the phase shift of the passed electromagnetic wave at 96 GHz on the differential resistance of pin-diodes

Download (107KB)

Copyright (c) 2024 Russian Academy of Sciences