Efficiency of sub-THz – DC energy conversion of a silicon detector

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The efficiency of sub-THz to DC energy conversion of a silicon-based plasmonic detector was studied. The dependence of the signal at the detector output on the incident radiation power was measured. In the power linear region, the coefficient η was shown to grow with increasing power and to saturate in the sub-linear regime. The maximum achieved values of η were 0.4% for the radiation frequency of 97 GHz. The measurements were carried out both at room temperature and when the detector was cooled to liquid nitrogen temperature.

Full Text

Restricted Access

About the authors

A. V. Shchepetilnikov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Author for correspondence.
Email: shchepetilnikov@issp.ac.ru
Russian Federation, Chernogolovka

A. R. Khisameeva

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Russian Federation, Chernogolovka

Ya. V. Fedotova

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Russian Federation, Chernogolovka

A. A. Dryomin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Russian Federation, Chernogolovka

I. V. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Russian Federation, Chernogolovka

References

  1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
  2. Wang P.L., Lou J., Fang G.Y., Chang C. // IEEE Trans. Microw. Theory Techn. 2022. V. 70. No. 11. P. 5117.
  3. Pearson J.C., Drouin B.J., Yu S. // IEEE J. Microw. 2021. V. 1. No. 1. P. 43.
  4. Chen Z., Ma X., Zhang B. et al. // China Commun. 2019. V. 16. No. 2. P. 1.
  5. Yang X., Zhao X., Yang K. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  6. Tzydynzhapov G., Gusikhin P., Muravev V. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  7. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Opt. 2021. V. 60. No. 33. P. 10448.
  8. Shinohara N. Recent wireless power transfer technologies via radio waves. Gistrup: River Publishers, 2018.
  9. Mizojiri S., Shimamura K. // IEEE Asia-Pacific Microwave Conference (APMC). (Singapore, 2019). P. 705.
  10. Citroni R., Di Paolo F., Livreri P. // Nanomaterials. 2022. V. 12. No. 14. P. 2479.
  11. Joseph S.D., Hsu Sh.H.S., Huang Y. // IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT). 2021. P. 1.
  12. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  13. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406.
  14. Muravev V.M., Kukushkin I.V. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  15. Муравьев В.М., Соловьев В.В., Фортунатов А.А. и др. // Письма в ЖЭТФ. 2016. Т. 103. № 12. С. 891.
  16. Shchepetilnikov A.V., Kaysin V.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.
  17. Shchepetilnikov A.V., Kukushkin I.V., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
  18. Хисамеева А.Р., Щепетильников А.И., Федотова Я.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. С. 172; Khisameeva A.R., Shchepetilnikov A.V., Fedotova Ya.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 2. P. 145.
  19. Chiou H.K., Chen I.S. // IEEE Trans. Microw. Theory Techn. 2010. V. 58. No. 12. P. 3598.
  20. Weissman N., Jameson S., Socher E. W-band CMOS on-chip energy harvester and rectenna // IEEE MTT-S Int. Microwave Symp. (Tampa, 2014). P. 1.
  21. Kapilevich B., Shashkin V., Litvak B. et al. // IEEE Microwave. Wirel. Compon. Lett. 2016. V. 26. No. 8. P. 637.
  22. Shaulov E., Jameson S., Socher E. // IEEE MTT-S Int. Microwave Symp. (Honolulu, 2017). P. 307.
  23. He P., Zhao D.A. // IEEE MTT-S Int. Microwave. Symp. (Boston, 2019). P. 634.
  24. Wentzel A., Yacoub H., Johansen T.K. et al. // Proc. 17th EuMIC (Milan, 2022). P. 208.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the detector sensitivity on the frequency of subterahertz radiation measured at room temperature (a). Dependence of the constant voltage at the detector output on the power of subterahertz radiation incident on the detector at room temperature (black circles) and at the temperature of liquid nitrogen (blue circles). The frequency of radiation is 97 GHz (b). Dependence of the electromagnetic wave energy conversion coefficient into DC energy on the radiation power at room temperature (black circles) and at the temperature of liquid nitrogen (blue circles). Radiation frequency - 97 GHz (c)

Download (329KB)

Copyright (c) 2024 Russian Academy of Sciences