Dynamics of the electromagnetic field near the edge of a stripe line during its charging
- Authors: Kornienko V.N.1, Kulagin V.V.1,2
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 88, No 2 (2024)
- Pages: 273-276
- Section: Wave Phenomena: Physics and Applications
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654763
- DOI: https://doi.org/10.31857/S0367676524020192
- EDN: https://elibrary.ru/RQYFVL
- ID: 654763
Cite item
Abstract
The spatiotemporal distribution of the electromagnetic field near the edge of the strip line when it is charged to a constant value of the voltage between the strips is studied by the methods of a computational experiment. The conditions under which a monopolar electromagnetic pulse is emitted into free space are revealed.
Full Text

About the authors
V. N. Kornienko
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences
Author for correspondence.
Email: korn@cplire.ru
Russian Federation, Moscow
V. V. Kulagin
Kotelnikov Institute of Radioengineering and Electronics of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: korn@cplire.ru
Russian Federation, Moscow; Moscow
References
- Архипов Р.М., Архипов М.В., Розанов Н.Н. // Квант. электрон. 2020. Т. 50. № 9. С. 801.
- Popov N.L., Vinogradov A.V. // Foundations. 2021. V. 1. No. 2. P. 169.
- Фещенко Р.М. // ЖЭТФ. 2023. Т. 163. № . 4. С. 461; Feshchenko R.M. // JETP. 2023. V. 136. No. 4. P. 406.
- Гуляев Ю.В., Черепенин В.А., Вдовин В.А. и др. // Радиотехн. и электрон. 2015. Т. 60. № 10. С. 1051; Gulyaev Y.V., Cherepenin V.A., Vdovin V.A. et al. // J. Commun. Technol. Electron. 2015. V. 60. No. 10. P. 1097.
- Гуляев Ю.В., Черепенин В.А., Таранов И.В. и др. // Радиотехн. и электрон. 2020. Т. 65. № 2. С. 189; Gulyaev Y.V., Cherepenin V.A., Taranov I.V. et al. // J. Commun. Technol. Electron. 2020. V. 65. No. 2. P. 193.
- You D., Jones R.R., Bucksbaum P.H. // Opt. Lett. 1993. V. 18. No. 4. P. 290.
- You D., Bucksbaum P.H. // J. Opt. Soc. Amer. B. 1997. V. 14. No. 7. P. 1651.
- Wu H.–C., Meyer-ter-Vehn J. // Nature Photonics. 2012. V. 6. P. 304.
- Xu J., Shen B., Zhang X. et al. // Sci. Reports. 2018. V. 8. Art. No. 2669.
- Kuratov A.S., Brantov A.V., Kovalev V.F., Bychenkov V. Yu. // Phys. Rev. E. 2022. V. 106. Art. No. 035201.
- Fedorov V.M., Ostashev V.E., Tarakanov V.P., Ul’yanov A.V. // J. Phys. Conf. Ser. 2017. V. 830. Art. No. 012020.
- http://jre.cplire.ru/jre/mar17/8/text.pdf.
- Бэдсел Ч., Ленгдон А. Физика плазмы и численное моделирование. М.: Энергоатомиздат, 1989. 452 с.
- Taflove A. Computational electrodynamics. The finite-difference time-domain method. London: ArtechHouse, 1995. P. 188.
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Schematic representation of the system under consideration. 1, 2 - ideally conducting strips, 3 - voltage source, 4 - key
Download (50KB)
3.
Fig. 2. Dependence of the magnetic field component on the longitudinal coordinate at different (consecutive) moments of time
Download (114KB)
