Topological laws of the Rayleigh wave scattering on a statistical inhomogeneity of isotropic solid in the Rayleigh limit

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Topological laws of the Rayleigh wave scattering on a statistical inhomogeneity of isotropic solid are obtained theoretically in the Rayleigh limit. They are completely defined by the inhomogeneity structure and include the Rayleigh law of scattering as a particular case. They violate the Rayleigh law in the case of a more general inhomogeneity topology, then the Rayleigh one. It enables first to construct theoretically arbitrary spectrum of scattering up to its oscillations and a strong angular anisotropy.

Full Text

Restricted Access

About the authors

V. N. Chukov

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Author for correspondence.
Email: vchukov@mail.ru
Russian Federation, Moscow

References

  1. Лорд Рэлей. Теория звука. Т. 2. М.: Гостехиздат, 1955. С. 153.
  2. Lord Rayleigh // Proc. Lond. Math. Soc. 1885. V. 17. P. 4.
  3. Lord Rayleigh // Proc. Royal. Soc. London. 1907. V. A 79. P. 399.
  4. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 7. Теория упругости. М.: Наука: Физматгиз, 1987. Landau L.D., Lifshitz E.M. Theory of elasticity. Elsevier, 1986.
  5. Ньютон Р. Теория рассеяния волн и частиц. М.: Мир, 1969. С. 60; Newton R.G. Scattering theory of waves and particles. Springer, 1982. P. 54.
  6. Biryukov S.V., Weihnacht M. // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007. V. 54. P. 453.
  7. Бирюков С.В., Гуляев Ю.В., Крылов В.В., Плесский В.П. Поверхностные акустические волны в неоднородных средах. М.: Наука, 1991; Biryukov S.V., Gulyaev Yu.V., Krylov V.V., Plesskii V.P. Surface acoustic waves in inhomogeneous media. Springer-Verlag, 1995.
  8. Басс Ф.Г., Фукс И.М. Рассеяние волн на статистически неровной поверхности. М.: Наука, 1972; Bass F.G., Fuks I.M. Wave scattering from statistically rough surfaces. New York, Pergamon Press, 1979.
  9. Maradudin A.A., Mills D.L. // Ann. Physics. 1976. V. 100. P. 262.
  10. Maradudin A.A. // In: Compendium on electromagnetic analysis. From electrostatics to photonics: fundamentals and applications for physicists and engineer V. 4. Optics and Photonics I. World Scientific, 2020.
  11. Хусу А.П., Витенберг Ю.Р., Пальмов В.А. Шероховатость поверхностей. Теоретико-вероятностный подход. М.: Наука, 1975.
  12. Яглом А.М. Корреляционная теория стационарных случайных функций Л.: Гидрометеоиздат, 1981. С. 105; Yaglom A.M. Correlation theory of stationary and related random functions. V. I, II. Springer, 1987.
  13. Алехин В.П. Физика прочности и пластичности поверхностных слоев материалов. М.: Наука, 1983.
  14. Sarris G., Haslinger S.G., Huthwaite P. et al. // JASA. 2021. V. 149. P. 4298.
  15. Чуков В.Н. К теории рассеяния поверхностных рэлеевских и объемных акустических волн различных поляризаций на трехмерной и двумерной статистической шероховатости свободной поверхности изотропного твердого тела. Дисс. … канд. физ. – мат. наук. М.: МИФИ, 1994.
  16. Чуков В.Н. О законах рэлеевского, резонансного и коротковолнового рассеяния волны Рэлея. М.: Препринт ИБХФ РАН, 2002.
  17. Chukov V.N. // Proc. Int. Conf. “Days on Diffraction 2012” (St. Petersburg, 2012) P. 47.
  18. Chukov V.N. Connection between violation of the Rayleigh law of scattering and the resonance scattering. Moscow: Preprint IBCP RAS, 2014.
  19. Chukov V.N. // Proc. “Days on Diffraction” International Seminar (St. Petersburg, 2011). P. 55.
  20. Chukov V.N. // Solid State Commun. 2009. V. 149. P. 2219.
  21. Chukov V.N. // Ultrasonics. 2012. V. 52. P. 5.
  22. Chukov V.N. The Rayleigh law violation and its influence on the wave scattering. A theoretical physics study. Saarbrücken: Lambert Academic Publishing, 2017.
  23. Чуков В.Н. // Науч. – техн. вед. СПбГПУ. Физ. – мат. 2023. T. 16. № 1.2. С. 557.
  24. Чуков В.Н. // Сб. тр. XXXIV Всеросс. школы-семин. “Волны 2023” (Москва, 2023). С. 27.
  25. Арсенин В.Я. Методы математической физики и специальные функции. М.: Наука, 1974; Arsenin V. Ya. Basic equations and special functions of mathematical physics. London: Kings College, 1968.
  26. Градштейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М.: Физматгиз, 1962; Gradshteyn I.S., Ryzhik I.M. Tables of Integrals, Series, and Products. Elsevier, 2007.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Correlator (3), (14) - (23), (27) describing the ensemble of realisations of statistical inhomogeneity (a), averaging over which gives the angular distribution (9) under the deterministic structure of the disturbed layer F(x3) in the form (24) everywhere, satisfying the Rayleigh scattering law in accordance with the topological scattering laws in the Rayleigh limit (25), (26). NR = 0 (25); τm = τ / amax; N(r) = 1, (17), , m11 = 0, (17), . Poisson's ratio σ = 0.25, d / amax = 1, q1 = 1 (24) and (22) throughout. Rayleigh scattering law for the angular scattering distribution , where everywhere, unless otherwise specified, p0 = 0.1, with the correlator shown in Fig. 1a (b). The correlator (3), (14) to (23), (27), which gives a violation of the Rayleigh scattering law according to the topological laws (25), (26). NR = 6; N(r) = 1, , , , m11 = 3, , (c). Violation of the Rayleigh scattering law. for the correlator shown in Fig. 1c; p0 = 0.1 (d). The correlator (3), (14) - (23), (29), which gives scattering oscillations in the Rayleigh limit. N(r) = 1, , , , , , , , m11 = 1, m12 = 31, m13 = 25, , (e). Scattering oscillations in the Rayleigh limit. Violation of the Rayleigh scattering law presented in Fig. 1b. for the correlator presented in Fig. 1d; p0 = 0.015 (e)

Download (251KB)
3. Fig. 2. The characteristic angular anisotropy of Rayleigh scattering (a) found in the present work due to the boundary conditions on the free inhomogeneous surface and the inhomogeneity structure (24) perpendicular to the surface, while preserving the Rayleigh frequency law of scattering for the correlation function presented in Fig. 1a. Fully angle isotropic Rayleigh scattering pattern (b) obtained by excluding the influence of boundary conditions and vertical arbitrary F(x3) (2) of the inhomogeneity structure on the Rayleigh wave scattering angular distribution (30), (31), while taking into account the correlator presented in Fig. 1a. everywhere unless otherwise specified

Download (112KB)
4. Fig. 3. Correlator (3), (14) - (23), (29), which gives strong anisotropy and scattering zeros in the Rayleigh limit p << 1 determined by the new topological laws (25), (26) with obligatory violation of the Rayleigh frequency law for long-wavelength scattering (a). The parameter values are the same as for Fig. 1d, but m11 = 1; m12 = 2; m13 = 3 (17). Strong anisotropy and zeros of the angular distribution of Rayleigh wave scattering in the Rayleigh limit (b). Violation of both the pure Rayleigh [1, 5] isotropy of the angular distribution of scattering presented in Fig. 2b and the characteristic anisotropy of Rayleigh scattering in the form of a forward shifted isotropic circle of the angular distribution in polar coordinates presented in Fig. 2a, and the topological symmetry of laws (25), (26) as a whole

Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences