Transport of non-equilibrium quasiparticle excitations in superconducting aluminum
- Authors: Gursky A.S.1, Shapovalov D.L.2, Arutyunov K.Y.1,2
-
Affiliations:
- Higher School of Economics National Research University
- Kapitza Institute for Physical Problems of the Russian Academy of Sciences
- Issue: Vol 88, No 2 (2024)
- Pages: 295-300
- Section: Wave Phenomena: Physics and Applications
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654766
- DOI: https://doi.org/10.31857/S0367676524020228
- EDN: https://elibrary.ru/RQTTVY
- ID: 654766
Cite item
Abstract
The electron transport of non-equilibrium quasiparticles injected into superconducting aluminum from a normal metal has been experimentally studied at ultralow temperatures. We studied hybrid nanostructures in the form of a T-shaped normal metal electrode (copper) – a dielectric tunnel layer (aluminum oxide) – a superconducting fork (aluminum), which can be considered as a solid-state analogues of a two-beam optical interferometer. At fixed bias voltages larger than the superconducting gap, a non-monotonic dependence of the tunnel current on perpendicular magnetic field is observed. The effect is interpreted as the presence of a coherent component of the quasiparticle current.
Full Text

About the authors
A. S. Gursky
Higher School of Economics National Research University
Author for correspondence.
Email: karutyunov@hse.ru
Russian Federation, Moscow
D. L. Shapovalov
Kapitza Institute for Physical Problems of the Russian Academy of Sciences
Email: karutyunov@hse.ru
Russian Federation, Moscow
K. Yu. Arutyunov
Higher School of Economics National Research University; Kapitza Institute for Physical Problems of the Russian Academy of Sciences
Email: karutyunov@hse.ru
Russian Federation, Moscow; Moscow
References
- Камашев А.А., Большаков С.А., Мамин Р.Ф., Гарифуллин И.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 9. С. 1268; Kamashev A.A., Bolshakov S.A., Mamin R.F., Garifullin I.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 9. P. 1308.
- Гайфуллин Р.Р., Деминов Р.Г., Кушнир В.Н. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 4. С. 468; Gaifullin R.R., Deminov R.G., Kushnir V.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 4. P. 404.
- Tinkham M. Introduction to superconductivity. McGraw-Hill Inc., 1996.
- Clarke J. Nonequlibrium superconductivity, phonons, and Kapitza boundaries. New York: Plenum Press, 1981.
- Kopnin N. Theory of nonequilibrium superconductivity. New York: Oxford University Press, 2001.
- Tinkham M., Clarke J. // Phys. Rev. Lett. 1972. V. 28. No. 21. P. 1366.
- Clarke J. // Phys. Rev. Lett. 1972. V. 28. No. 21. P. 1363.
- Yagi R. // Superlattices and microstructures. 2003. V. 34. No. 3‒6. P. 263.
- Beckmann D., Weber H.B., v. Löhneysen H. // Phys. Rev. Lett. 2004. V. 93. Art. No. 197003.
- Russo S., Kroug M., Klapwijk T.M., Morpurgo A.F. // Phys. Rev. Lett. 2005. V. 95. Art. No. 027002.
- Cadden Zimansky P., Chandrasekhar V. // Phys. Rev. Lett. 2006. V. 97. Art. No. 237003.
- Arutyunov K.Yu., Auraneva H.–P., Vasenko A.S. // Phys. Rev. B. 2011. V. 83. Art. No. 104509.
- Arutyunov K.Yu., Chernyaev S.A., Karabassov T. et al. // J. Phys. Cond. Matter. 2018. V. 30. Art. No. 343001.
- Aharonov Y., Bohm D. // Phys. Rev. 1959. V. 115. P. 485.
- Zavyalov V., Chernyaev S., Shein K. et al. // J. Phys. Conf. Ser. 2018. V. 969. Art. No. 012086.
- Шарвин Д.Ю., Шарвин Ю.В. // Письма в ЖЭТФ. 1981. Т. 34. № 5. С. 101.
- Альтшулер Б.Л., Аронов А.Г., Спивак Б.З. // Письма в ЖЭТФ. 1981. Т. 33. № 2. С. 101.
Supplementary files
