Non-perturbative theory of atomic systems interaction with intense laser fields
- Authors: Stremoukhov S.Y.1,2
-
Affiliations:
- Lomonosov Moscow State University
- National Research Centre “Kurchatov Institute”
- Issue: Vol 88, No 1 (2024)
- Pages: 48-53
- Section: Wave Phenomena: Physics and Applications
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/654782
- DOI: https://doi.org/10.31857/S0367676524010094
- EDN: https://elibrary.ru/SAVPMF
- ID: 654782
Cite item
Abstract
A brief description of a consistent non-perturbative approach to study the response of an ensemble of atoms to the action of intense multi-component arbitrary polarized laser field is presented. Its application to the study of the generation of high-order harmonics and generation of terahertz radiation in multi-color laser fields is discussed.
Full Text

About the authors
S. Yu. Stremoukhov
Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: sustrem@gmail.com
Faculty of Physics
Russian Federation, Moscow; MoscowReferences
- Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988. С. 312.
- Беленов Э.М., Назаркин А.В. // Письма в ЖЭТФ. 1990. Т. 51. № 5. С. 252; Belenov E.M., Nazarkin A.V. // JETP Lett. 1990. V. 51. No. 5. P. 288.
- Маймистов А.И. // Квант. электрон. 2000. Т. 30. № 4. С. 287; Maimistov A.I. // Quant. Electron. 2000. V. 30. No. 4. P. 287.
- Козлов C.A. // Опт. и спектроск. 1995. Т. 79. № 2. С. 290; Kozlov S.A. // Opt. Spectrosc. 1995. V. 79. No. 2. P. 267.
- Сазонов С.В., Соболевский А.Ф. // Письма в ЖЭТФ. 2002. Т. 75. С. 746; Sazonov S.V., Sobolevski A.F. // JETP Lett. 2002. V. 75. P. 621.
- Кучиев М.Ю. // Письма в ЖЭТФ. 1987. Т. 45. № 7. С. 319; Kuchiev M.Yu. // JETP Lett. 1987. V. 45. No. 7. P. 404.
- Corkum P.B. // Phys. Rev. Lett. 1993. V. 71. P. 1994.
- Платоненко В.Т. // Квант. электрон. 2001. Т. 31. № 1. С. 55; Platonenko V.T. // Quant. Electron. 2001. V. 31. No. 1. P. 404.
- Андреев А.В. // ЖЭТФ. 1999. Т. 116. № 3(9). С. 793; Andreev A.V. // JETP. 1999. V. 116. No. 3. P. 421.
- Стрелков В.В., Платоненко В.Т., Стержантов А.Ф., Рябикин М.Ю. // УФН. 2016. T. 86. № 5. С. 449; Strelkov V.V., Platonenko V.T., Sterzhantov A.F., Ryabikin M.Yu. // Phys. Usp. 2016. V. 86. No. 5. P. 425.
- Borodin A.V., Panov N.A., Kosareva O.G. et al. // Opt. Lett. 2013. V. 38. P. 1906.
- Zhang D., Lü Z., Meng C. et al. // Phys. Rev. Lett. 2012. V. 109. Art. No. 243002.
- Andreev A.V., Stremoukhov S.Yu., Shoutova O.A. // Eur. Phys. J. D. 2012. V. 66. Art. No. 16.
- Stremoukhov S., Andreev A., Vodungbo B. et al. // Phys. Rev. A. 2016. V. 94. Art. No. 013855.
- Andreev A.V., Stremoukhov S.Yu. // Phys. Rev. A. 2013. V. 87. Art. No. 053416.
- Andreev A.V., Stremoukhov S.Yu., Shoutova O.A. // J. Opt. Soc. Amer. B. Opt. Phys. 2013. V.30. No. 7. P. 1794.
- Lvov K.V., Stremoukhov S.Yu., Potemkin F.V. // J. Optics. 2021. V. 23. Art. No. 065502.
- Stremoukhov S.Yu., Andreev A.V. // Laser Phys. 2018. V. 28. Art. No. 035403.
- Stremoukhov S.Yu., Andreev A.V. // Laser Phys. Lett. 2015. V. 12. Art. No. 015402.
- Stremoukhov S., Andreev A. // J. Opt. Soc. Amer. B. Opt. Phys. 2017. V. 34. No. 2. P. 232.
- Migal E., Stremoukhov S., Potemkin F. // Phys. Rev. A. 2020. V. 101. Art. No. 021401(R).
- Lambert G., Vodungbo B., Gautier J. et al // Nature Commun. 2015. V. 6. P. 6167.
- Ganeev R.A., Boltaev G.S., Stremoukhov S.Yu. et al. // Eur. Phys. J. D. 2020. V. 74. Art. No. 199.
- Ganeev R.A., Stremoukhov S.Yu., Andreev A.V., Alnaser A.S. // Appl. Science. 2019. V. 9. P. 1701.
- Andreev A.V., Ganeev R.A., Kuroda H. et al. // Eur. Phys. J. D. 2013. V. 67. P. 22.
- Stremoukhov S.Yu., Ganeev R.A., Andreev A.V. // Spr. Proc. Phys. 2020. V. 241. P. 99.
- Zhvaniya I.A., Dzhidzhoev M.S., Semenov T.A. et al. // J. Phys. Conf Ser. 2020. V. 1692. Art. No. 012017.
- Andreev A.V., Angeluts A.A., Balakin A.V. et al. // IEEE Trans. Terahertz. Sci. Technol. 2020. V. 10. No. 1. P. 85.
- Стремоухов С.Ю. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 770; Stremoukhov S.Yu. // Bull. Rus. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 646.
- Stremoukhov S.Yu. // J. Opt. Soc. Amer. B. Opt. Phys. 2022. V. 39. No. 4. P. 1203.
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Time dependence of the dual-frequency laser field (a); time dependence of the atomic response current to the dual-frequency laser field calculated using formula (2) (b); photoemission spectrum of the atomic response (c) (blue curve with triangles), its projections onto the perpendicular axes (black curve with squares and red curve with circles) and its long-wave part (d). The calculations were performed for an argon atom (the model structure of the atomic levels is presented in [16]) interacting with a dual-frequency laser field formed by the linearly polarized first and second harmonics of a Ti:Sa laser. The field parameters used in the calculations are µ01 = 0.1 (amplitude of the two-frequency field component at the fundamental frequency of the laser), µ02 = 0.1 (amplitude of the two-frequency field component at the second harmonic frequency of the laser), τ1 = τ2 = 26.6 fs (pulse duration), is the angle between the polarization directions of the two-frequency field components, t02 – t01 = 0 is the time delay between pulses.
Download (560KB)
3.
Fig. 2. Schematic representation of gas (gray rectangle) with atoms (black circles) generating electromagnetic field (red arrows indicate its two projections) (a). Radial distribution of the 6th harmonic intensity calculated for 1 cm long argon gas at a pressure of 0.01 mbar (b) and 500 mbar (c) in the medium. The calculation was performed for laser radiation formed from the first and second harmonics of a Ti:Sa laser, the intensity of the field components µ01 = 0.1, µ01 = 0.1, pulse duration τ1 = τ2 = 30 fs, the angle between the polarizations of the field components Radiation at frequencies of 1 THz (g) and 11 THz (d), emitted by an extended argon gas medium. The black rectangle shows the volume of the gas chamber (length 40 cm, width 1.8 cm). The parameters of the dual-frequency laser field formed by the first and second harmonics of the Ti:Sa laser are µ01 = 0.1, µ02 = 0.0147 τ1 = τ2 = 30 fs (phase difference between the components of the dual-frequency field). The color indicates the intensity scale of the generated radiation in relative units.
Download (425KB)
