Formation of quasi unipolar pulses in nonequilibrium magnetized plasma channels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of controlling both the spectral and polarization properties of THz pulses propagating in strongly nonequilibrium extended magnetized plasma channels formed by intense UV femtosecond laser pulses in nitrogen (air) is analyzed. The formation of quasiunipolar pulses with a nonzero electric area and a specific state of polarization is discussed. The transformation of such pulses upon leaving the region of a static magnetic field is analyzed.

Full Text

Restricted Access

About the authors

A. V. Bogatskaya

Lomonosov Moscow State University;Lebedev Physical Institute of the Russian Academy of Sciences

Email: alexander.m.popov@gmail.com

Faculty of Physics

Russian Federation, Moscow; Moscow

E. A. Volkova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: alexander.m.popov@gmail.com
Russian Federation, Moscow

A. M. Popov

Lomonosov Moscow State University; Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: alexander.m.popov@gmail.com

Faculty of Physics

Russian Federation, Moscow; Moscow

References

  1. Tonouchi M. // Nature Photon. 2007. V. 1. P. 105.
  2. Kampfrath T., Tanaka K., Nelson K. // Nature Photon. 2013. V. 7. P. 680.
  3. Jepsen P., Cooke D., Koch M. // Laser Photon. Rev. 2011. V. 5. P. 124.
  4. Yang X., Zhao X., Yang K. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  5. Hoshina H., Morisawa Y., Sato H. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 9173.
  6. Katletz S., Pfleger M., Pühringer H. et al. // Opt. Express. 2012. V. 20. P. 23025.
  7. Розанов Н.Н. // Опт. и спектроск. 2009. Т. 107. С. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  8. Arkhipov R., Arkhipov M., Pakhomov A. et al. // Laser Phys. Lett. 2022. V. 19. Art. No. 043001.
  9. Chai X., Ropagnol X., Raeis-Zadeh S.-M. et al. // Phys. Rev. Lett. 2018. V. 121. Art. No. 143901.
  10. Sychugin S., Novokovskaya A., Bakunov M. // Phys. Rev. A. 2022. V. 105. Art. No. 053528.
  11. Arkhipov R., Pakhomov A., Arkhipov M. et al. // Opt. Lett. 2019. V. 44. P. 1202.
  12. Pakhomov A., Arkhipov M., Rosanov N., Arkhipov R. // Phys. Rev. A. 2022. V. 105. Art. No. 043103.
  13. Бессонов Е.Г. // ЖЭТФ 1981. Т. 80. С. 852; Bessonov E.G. // Sov. Phys. JETP 1981. V. 80. P. 433.
  14. Pakhomov A.V., Arkhipov R.M., Arkhipov M.V. et al. // Sci. Reports. 2019. V. 9. P. 7444.
  15. Arkhipov M.V., Arkhipov R.M., Pakhomov A.V. et al. // Opt. Lett. 2017. V. 42. P. 2189.
  16. Bakunov M.I., Maslov A.V., Tsarev M.V. // Phys. Rev. A 2017. V. 95. Art. No. 063817.
  17. Bogatskaya A.V., Volkova E.A., Popov A.M. // Plasma Sources Sci. Technol. 2022. V. 31. No. 9. Art. No. 095009.
  18. Tsarev M.V., Bakunov M.I. // Opt. Express. 2019. V. 27. P. 5154.
  19. Kozlov V.V., Rosanov N.N., Angelis C.D., Wabnitz S. // Phys. Rev. A. 2011. V. 84. Art. No. 023818.
  20. Архипов Р.М., Архипов М.В., Розанов Н.Н. // Квант. электрон. 2020. Т. 50. № 9. С. 801; Arkhipov R.M., Arkhipov M.V., Rosanov N.N. // Quant. Electron. 2020. V. 50. No. 9. P. 801.
  21. Shou Y., Hu R., Gong Z., Yu J. et al. // New J. Physics. 2021. V. 23. Art. No. 053003.
  22. Архипов М.В., Архипов Р.М., Розанов Н.Н. // Опт. и спектроск. 2021. Т. 129. № 3. С. 1173; Arkhipov M.V., Arkhipov R.M., Rosanov N.N. // Opt. Spectrosc. 2021. V. 129. No. 3. P. 1193.
  23. Reimann K. // Rep. Progr. Phys. 2007. V. 70. P. 1597.
  24. Bogatskaya A.V., Volkova E.A., Popov A.M. // Photonics. 2023. V. 10. P. 113.
  25. Bogatskaya A.V., Gnezdovskaia N.E., Popov A.M. // Phys. Rev. E. 2020. V. 102. Art. No. 043202.
  26. Богацкая А.В., Попов А.М. // Письма в ЖЭТФ 2013. Т. 97. № 7. С. 388; Bogatskaya A.V., Popov A.M. // JETP Lett. 2013. V. 97. No. 7. P. 388.
  27. Bogatskaya A.V., Volkova E.A., Popov A.M. // J. Physics D. 2014. V. 47. Art. No. 185202.
  28. Bogatskaya A.V., Volkova E.A., Popov A.M. // Phys. Rev. E. 2022. V. 105. Art. No. 055203.
  29. Bogatskaya A.V., Volkova E.A., Popov A.M. // Phys. Rev. E. 2021. V. 104. Art. No. 025202.
  30. Balčiūnas T., Lorenc D., Ivanov M. et al. // Opt. Exp. 2015. V. 23. P. 15278.
  31. Seifert T., Jaiswal S., Sajadi M. et al. // Appl. Phys. Lett. 2017. V. 110. Art. No. 252402.
  32. Zhang D., Bai Y., Zeng Y. et al. // IEEE Photon. J. 2022. V. 14. No. 1. Art. No. 5910605.
  33. Архипов Р.М., Архипов М.В., Пахомов А.В. и др. // Письма в ЖЭТФ 2023. Т. 117. № 1. С. 10; Arkhipov R.M., Arkhipov M.V., Pakhomov A.V. et al. // JETP Lett. 2023. V. 117. No. 1. P. 8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Unipolarity factor on the path length in the plasma of a 30 cm long channel in a uniform magnetic field without taking into account (1) and taking into account (2) the change in the magnetic field induction at the output of the solenoid depending on the cyclotron frequency. The peak value of the intensity in the initial pulse is 104 W/cm2.

Download (54KB)
3. Fig. 2. Unipolarity factor along the path length in a 30 cm long channel plasma in a uniform magnetic field depending on the peak intensity of the initial pulse for cyclotron frequency values ​​ΩB = 2 ⋅ 1012 s–1 (1) and ΩB = 5 ⋅ 1011 s–1 (2).

Download (58KB)
4. Fig. 3. Dependence of the THz pulse energy in relative units on the path length in the plasma channel. The solenoid boundary is at the point z = 30 cm. The peak intensity in the initial pulse is 104 W/cm2. The cyclotron frequencies in the channel plasma (in inverse seconds) are: (1) 5×1011, (2) 1012, (3) 2×1012, (4) 4×1012.

Download (77KB)
5. Fig. 4. Paraxial spatial distributions of electric fields Ex, Ey (a) and dependence Ey(Ex) (b) in the THz pulse after propagation over a distance of 36 cm in the magnetized plasma channel. The end of the channel is at the point z = 30 cm. The value of the cyclotron frequency in the channel is ΩB = 4 ⋅ 1012 s–1, the initial peak value of the intensity is 104 W/cm2, the carrier frequency of the initial pulse is ω0 = 2 ⋅ 1012 s–1. The electric field vector rotates counterclockwise.

Download (170KB)

Copyright (c) 2024 Russian Academy of Sciences