On the parametric few-cycle light bullets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical simulation demonstrates that (2D+1) few-cycle (3–5 oscillations under the envelope) light bullets may form in the medium with quadratic nonlinearity and group velocity anomalous dispersion under conditions of second-harmonic generation. It is shown that as the number of oscillations under the envelope decreases, the parameters of such two-frequency solitons change.

Full Text

Restricted Access

About the authors

K. V. Koshkin

Lomonosov Moscow State University

Author for correspondence.
Email: koshkin.kv19@physics.msu.ru
Russian Federation, Moscow

S. V. Sazonov

Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”; Moscow Aviation Institute (National Research University)

Email: koshkin.kv19@physics.msu.ru
Russian Federation, Moscow; Moscow; Moscow

A. A. Kalinovich

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
Russian Federation, Moscow

M. V. Komissarova

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
Russian Federation, Moscow

References

  1. Kanashov A.A., Rubenchik M. // Physica D. 1981. V. 4. No. 1. P. 122.
  2. Skryabin D.V., Firth W.J. // Opt. Commun. 1998. V. 148. P. 79.
  3. Malomed B.A., Drummond P., He H. et al. // Phys. Rev. E. 1997. V. 56. P. 4725.
  4. Liu X., Beckwitt K., Wise F. // Phys. Rev. E. 2000. V. 62. P. 1328.
  5. Liu X., Qian L., Wise F. // Phys. Rev. Lett. 1999. V. 82. No. 2. P. 83.
  6. Sazonov S.V., Mamaikin M.S., Zakharova I.G., Komissarova M.V. // Phys. Wave Phenom. 2017. V. 25. P. 83.
  7. Сазонов С.В. // Опт. и спектроск. 1995. Т. 79. № 2. С. 282.
  8. Сазонов С.В., Комиссарова М.В. // Письма в ЖЭТФ. 2020. Т. 111. № 6. С. 355; Sazonov S.V., Komissarova M.V. // JETP Lett. 2020. V. 111. No. 6. P. 355.
  9. Brabec T., Krausz F. // Rev. Modern Phys. 2000. V. 71. No. 2. P. 545.
  10. Желтиков А.М. Сверхкороткие импульсы и методы нелинейной оптики. М.: Физматлит, 2006.
  11. Архипов Р.М., Архипов М.В., Бабушкин И. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 5. С. 298; Arkhipov R.M., Arkhipov M.V., Babushkin I. et al. // JETP Lett. 2021. V. 114. No. 5. P. 298.
  12. Brabec T., Krausz F. // Phys. Rev. Lett. 1997. V. 78. No. 17. P. 3282.
  13. Маймистов А.И. // Квант. электрон. 2000. Т. 30. № 4. C. 287; Maimistov A.I. // Quantum. Electron. 2000. V. 30. No. 4. P. 287.
  14. Козлов С.А., Сазонов С.В. // ЖЭТФ. 1997. Т. 111. № 2. C. 404; Kozlov S.A., Sazonov S.V. // JETP. 1997. V. 111. No. 2. P. 221.
  15. Маймистов А.И. // Квант. электрон. 2010. Т. 40. № 9. С. 756; Maimistov A.I. // Quant. Electron. 2010. V. 40. No. 9. P. 756.
  16. Розанов Н.Н. // Опт. и спектроск. 2009.Т. 107. № 5. С. 761; Rosanov N.N. // Opt. Spectrosc. 2009. V. 107. No. 5. P. 721.
  17. Komissarova M.V., Sazonov S.V., Kalinovich A.A., Zakharova I.G. // Proc. SPIE. 2019. V. 11026. Art. No. 110260L.
  18. Кившарь Ю.С., Агравал Г.П. Оптические солитоны: от волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005; Kivshar Yu.S., Agrawal G.P. Optical solitons: from fibers to photonic crystals. N. Y.: Academic Press, 2005.
  19. Trofimov V.A., Stepanenko S., Razgulin A. // PLoS ONE. 2019. V. 14. No. 12. Art. No. e0226119.
  20. Nikogosyan D.N. Nonlinear optical crystals: a complete survey. Springer Science+Business Media Inc., 2005.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spatial profile of the signal (N = 3) at the fundamental frequency for different values ​​of (a). Temporal profile of the signal (N = 3) at the fundamental frequency for different values ​​of (b).

Download (161KB)
3. Fig. 2. Dependence of the peak intensities of signals at the fundamental frequency on the longitudinal coordinate for different N. Solid line N = 4, dashed line N = 3.2, short dashed line N = 3 (a). Dependence of the peak intensities at the fundamental frequency and at the second harmonic (solid and dashed lines, respectively) on the longitudinal coordinate for N = 3 (b).

Download (130KB)
4. Fig. 3. Dependence of peak signal intensities at the fundamental frequency and at the second harmonic (solid upper and lower lines, respectively) on the longitudinal coordinate at N = 3. The dotted upper and lower lines are the peak intensities in the case of zero DGS at the second harmonic frequency.

Download (63KB)
5. Fig. 4. Dependence of the DGS coefficient β1,2 on the wavelength for LiNbO3. Solid and dotted lines are the DGS at the fundamental frequency and the second harmonic, respectively.

Download (57KB)

Copyright (c) 2024 Russian Academy of Sciences