Multiphoton ionization in a photonic crystal based on carbon nanotubes under the action of a few cycle optical pulse

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We considered a theoretical model of the interaction of a one-dimensional few cycles optical pulse with a nonlinear medium of semiconductor carbon nanotubes, which has a spatial modulation of the refractive index in the direction of pulse propagation (a one-dimensional photonic crystal). The results of the dependence of the rate of one- and two-photon ionization on the intensity of the short-wavelength pulse are shown. The effect of additional external electric and magnetic fields on the photoionization rate is considered.

Full Text

Restricted Access

About the authors

Yu. V. Dvuzhilova

Volgograd State University

Email: dvuzhilov.ilya@volsu.ru
Russian Federation, Volgograd

I. S. Dvuzhilov

Volgograd State University

Author for correspondence.
Email: dvuzhilov.ilya@volsu.ru
Russian Federation, Volgograd

M. B. Belonenko

Volgograd State University

Email: dvuzhilov.ilya@volsu.ru
Russian Federation, Volgograd

References

  1. Yablonovitch E. // Phys. Rev. Let. 1987. V. 58. No. 20. P. 2059.
  2. John S. // Phys. Rev. Let. 1987. V. 58. No 23. P. 2486.
  3. Joannopoulos J.D., Meade R.D., Winn J.N., Photonic crystals. Oxford: Princeton University Press, 1995. 305 p.
  4. Crosignani B., Cutolo A., di Porto P. // J. Opt. Soc. Amer. B. 1982. V. 72. P. 515.
  5. Елецкий А.В. // УФН 1997. Т. 167. № 8. С. 945; Eletskii A.V. // Phys. Usp. 1997. V. 167. No. 8. P. 899.
  6. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of fullerenes and carbon nanotubes. San Diego: Academic Press, 1996. 965 p.
  7. Харрис П., Углеродные нанотрубы и родственные структуры. Новые материалы ХХI века. М.: Техносфера, 2003. 336 с.
  8. Belonenko M.B., Demushkina E.V., Lebedev N.G. // J. Russ. Laser Res. 2006. V. 27. No 5. P. 457.
  9. Белоненко М.Б., Демушкина Е.В., Лебедев Н.Г. // ФТТ. 2008. Т. 50. № 2. С. 368; Belonenko M.B., Demushkina E.V., Lebedev N.G. // Phys. Solid State. 2008. V. 50. No. 2. P. 383.
  10. Couairona A., Mysyrowicz A. // Phys. Reports. 2007. V. 441. P. 47.
  11. Белоненко М.Б., Невзорова Ю.В. // Изв. РАН. Сер. физ. 2014. Т. 78. № 12. С. 1626; Belonenko M.B., Nevzorova J.V. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. No. 12. P. 1333.
  12. Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // EPJ D. 2015. V. 69. No. 5. P. 129.
  13. Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // Appl. Phys. B. 2017. V. 123. No. 7. P. 196.
  14. Dvuzhilova Y.V., Dvuzhilov I.S., Belonenko M.B. // J. Nano. Electronic Phys. 2021. V. 13. No 1. P. 1.
  15. Tans S.J., Devoret M.H., Dai H. et al. // Nature. 1997. V. 386. P. 474.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the electric field strength of the PKI on the coordinate at a fixed time of 10 ps during propagation in the CNT medium: in the absence of PC (red line), in the presence of PC (blue line).

Download (81KB)
3. Fig. 2. Dependence of the intensity of the PCR during one-photon (left) and two-photon (right) ionization in a homogeneous CNT medium without refractive index modulation (red line) and with it (blue line).

Download (151KB)
4. Fig. 3. Dependence of the intensity of the primary ionizing radiation during single-photon (left) and two-photon (right) ionization (1) – without ionizing radiation, (2) – in the presence of ionizing radiation under the action of an external electric field, (3) – in the presence of ionizing radiation in the absence of an external electric field.

Download (153KB)
5. Fig. 4. Dependence of the intensity of the PCR during one-photon (left) and two-photon (right) ionization in a CNT PC without taking into account the external magnetic field (red line) and taking into account the external magnetic field (blue line).

Download (154KB)

Copyright (c) 2024 Russian Academy of Sciences