Investigation of the third harmonic generation in a high-current relativistic Ka-band gyrotron

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Theoretical and experimental investigations of radiation generation in the frequency multiplication mode at the third harmonic in a high-current Ka-band gyrotron have been carried out. Within the framework of three-dimensional PIC-simulation, it is shown that the nonlinear transformation coefficient in the W-band can reach values of 0.5%. Experimental data on registration of radiation in this range are presented.

Full Text

Restricted Access

About the authors

E. B. Abubakirov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

A. N. Denisenko

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

A. N. Leontyev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky National Research Nizhny Novgorod State University

Author for correspondence.
Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

K. V. Mineev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky National Research Nizhny Novgorod State University

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

R. M. Rozental

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Lobachevsky National Research Nizhny Novgorod State University

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod; Nizhny Novgorod

References

  1. Palitsin A.V., Rodin Yu.V., Goykhman M.B. et al. // IEEE Electron Device Lett. 2022. V. 44. No. 2. P. 317.
  2. Wang J., Wang G., Wang D. et al. // Sci. Reports. 2018. V. 8. No. 1. Art. No. 6978.
  3. Данилов Ю.Ю., Леонтьев А.Н., Малкин А.М. и др. // ДАН. Физ.-техн. науки. 2022. Т. 504. С. 3.
  4. Данилов Ю.Ю., Денисенко А.Н., Леонтьев А.Н. и др. // Изв. вузов. Радиофизика. Т. 65. № 5–6. С. 448.
  5. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Dev. 2022. V. 69. No. 3. P. 1451.
  6. Завольский Н.А., Запевалов В.Е., Моисеев М.А. // Изв. вузов. Радиофизика. Т. 44. № 4. С. 345.
  7. Thumm M. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 1. P. 1.
  8. Thumm M., Denisov G.G., Sakamoto K., Tran M.Q. // Nucl. Fusion. 2019. V. 59. No. 7. Art. No. 073001.
  9. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V. et al. // IEEE Trans. Plasma Sci. 2002. V. 30. No. 3. P. 840.
  10. Зайцев Н.И., Завольский Н.А., Запевалов В.Е. и др. // Изв. вузов. Радиофизика. 2003. Т. 46. № 10. С. 914.
  11. Abubakirov E.B., Chirkov A.V., Denisov G.G. et al. // IEEE Trans. Electron Dev. 2017. V. 64. No. 4. P. 1865.
  12. Запевалов В.Е., Лыгин В.К., Малыгин О.В. и др. // Изв. вузов. Радиофизика. 2007. Т. 50. № 6. С. 461.
  13. Абубакиров Э.Б., Денисенко А.Н., Конюшков А.П. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 1. С. 56; Abubakirov E.B., Denisenko A.N., Konyushkov A.P. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 1. P. 48.
  14. Glyavin M. Yu., Luchinin A.G., Golubiatnikov G. Yu. // Phys. Rev. Lett. 2008. V. 100. No. 1. Art. No. 015101.
  15. Bratman V.L., Kalynov Yu.K., Manuilov V.N. // Phys. Rev. Lett. 2009. V. 102. No. 24. Art. No. 245101.
  16. Bratman V.L., Fedotov A.E., Kalynov Yu.K. et al. // IEEE Trans. Plasma Sci. 1999. V. 27. No. 2. P. 456.
  17. Glyavin M., Zotova I., Rozental R. et al. // J. Infrared Millim. THz Waves. 2020. V. 41. P. 1245.
  18. Golubiatnikov G.Yu., Koshelev M.A., Tsvetkov A.I. et al. // IEEE Trans. THZ Sci. Tech. 2020. V. 10. No. 5. P. 502.
  19. Братман В.Л., Гинзбург Н.С., Нусинович Г.С. и др. // В кн.: Релятивистская высокочастотная электроника. Горький: ИПФ АН СССР, 1979. С. 157.
  20. Леонтьев А.Н., Розенталь Р.М., Гинзбург Н.С. и др. // Письма в ЖТФ. 2022. Т. 48. № 24. C. 11.
  21. Леонтьев А.Н., Розенталь Р.М., Гинзбург Н.С. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 57; Leontyev A.N., Rozental P.M., Ginzburg N.S. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 46.
  22. Denisov G.G., Zotova I.V., Malkin A.M. et al. // Phys. Rev. E. 2022. V. 106. No. 2. Art. No. L023203.
  23. Denisov G., Zotova I., Zheleznov I. et al. // Appl. Science. 2022. V. 12. Art. No. 11370.
  24. Danilov Yu.Yu., Leontyev A.N., Leontyev N.V. et al. // IEEE Trans. Electron Dev. 2021. V. 68. No. 4. P. 2130.
  25. Данилов Ю.Ю., Денисенко А.Н., Леонтьев А.Н. и др. // Изв. вузов. Радиофизика. 2022. Т. 65. № 5–6. С. 448.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the interaction space in three-dimensional modeling using the large particle method, instantaneous position of macroparticles and their energy distribution (a). Calculated dependence of the power at the fundamental harmonic (mode TE–4.2) and at the third harmonic of the gyrofrequency (mode TM–12.4) on the magnetic field strength (b).

Download (225KB)
3. Fig. 2. External appearance of the experimental model of a relativistic high-current gyrotron.

Download (55KB)
4. Fig. 3. Scheme for measuring the parameters of gyrotron radiation in the Ka- and W-bands. 1 – gyrotron output window, 2 – waveguides, 3 – calorimeter; 4, 5 – directional couplers; 6, 7, 8, 9 – attenuators; 10, 12 – microwave detectors; 11, 13 – mixers; 14, 15 – heterodynes; 16 – oscilloscope.

Download (52KB)
5. Fig. 4. Experimentally measured pulse shapes at the fundamental (a) and third (c) harmonics of the gyrofrequency and the corresponding spectra (b) and (d).

Download (377KB)

Copyright (c) 2024 Russian Academy of Sciences