Simulation of electron-optical system for 300 GHz relativistic gyrotron

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calculations were made for a three-electrode magnetron-injector gun with a thermionic cathode for a relativistic gyrotron in the 300 GHz range, which provides the formation of a helical beam with an energy of 250 keV, a current of 100—300 A, and a pitch factor of 1.1. The possibility of generating radiation with a power of more than 8 MW in a gyrotron with a longitudinally slotted cavity has been shown within the framework of three-dimensional PIC-simulations.

Full Text

Restricted Access

About the authors

Yu. Yu. Danilov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

A. N. Leontyev

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

A. M. Malkin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

O. P. Plankin

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

R. M. Rozental

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

E. S. Semenov

Federal Research Center Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: leontiev@ipfran.ru
Russian Federation, Nizhny Novgorod

References

  1. Hu L., Song R., Ma G. et al. // IEEE Trans. Electron Devices. 2018. V. 65. No. 6. P. 2149.
  2. Wang J., Wang G., Wang D. et al. // Sci. Reports. 2018. V. 8. No. 1. P. 1.
  3. Arzhannikov A.V., Sinitsky S.L., Popov S.S. et al. // IEEE Trans. Plasma Sci. 2022. V. 50. No. 8. P. 2348.
  4. Глявин М.Ю., Лучинин А.Г., Богдашов А.А. и др. // Изв. вузов. Радиофизика. 2013. Т. 56. № 8. С. 550.
  5. Mondal D., Yuvaraj S., Rawat M. et al. // IEEE Trans. Electron Devices. 2022. V. 69. No. 3. P. 1442.
  6. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. et al. // IEEE Trans. Electron Devices. 2022. V. 69. No. 3. P. 1451.
  7. Zaitsev N.I., Ginzburg N.S., Ilyakov E.V. et al. // IEEE Trans. Plasma Sci. 2002. V. 30. No. 3. P. 840.
  8. Зайцев Н.И., Завольский Н.А., Запевалов В.Е. и др. // Изв. вузов. Радиофизика. 2003. Т. 46. № 10. С. 914.
  9. Abubakirov E.B., Chirkov A.V., Denisov G.G. et al. // IEEE Trans. Electron Devices. V. 64. No. 4. P. 1865.
  10. Планкин О.П., Семенов Е.С. // Вестн. НГУ. Сер. физ. 2013. Т. 8. № 2. С. 44.
  11. Семенов Е.С., Планкин О.П., Розенталь Р.М. // Изв. вузов “ПНД”. 2015. Т. 23. № 3. С. 94.
  12. Danilov Yu.Yu., Leontyev A.N., Leontyev N.V. et al. // IEEE Trans. Electron Dev. 2021. V. 68. No. 4. P. 2130.
  13. Харвей А.Ф. Техника сверхвысоких частот. Т. 1. М.: Советское радио, 1965. 784 с.
  14. Ваганов Р.Б., Матвеев Р.Ф., Мериакри В.В. Многоволновые волноводы со случайными нерегулярностями. М.: Советское радио, 1972. 232 с.
  15. Tarakanov V.P. // EPJ Web Conf. 2017. V. 149. Art. No. 04024.
  16. Rozental R.M., Danilov Yu.Yu., Leontyev A.N. // J. Infrared Millimeter. Terahertz Waves. 2022. V. 43. No. 8. P. 654.
  17. Rozental R.M., Tarakanov V.P. // J. Infrared Millimeter. Terahertz Waves. 2022. V. 43. No. 6. P. 479.
  18. Власов С.Н., Жислин Г.М., Орлова И.М. и др. // Изв. вузов. Радиофизика. 1969. Т. 12. № 8. С. 1236.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geometry of the electrodes of the original version of the EOS and the map of the distribution of the electric field strength (left), dependences of the electric field strength at different cathode rounding radii for operation with a beam current of 300 A (solid curves) and without a beam current (dashed curves) (right).

Download (154KB)
3. Fig. 2. Geometry of the optimized version of the EOS and the trajectory of electron movement.

Download (102KB)
4. Fig. 3. Geometry of the interaction space of a relativistic gyrotron and the instantaneous position of macroparticles in PIC modeling: 1 – helical electron beam, 2 – longitudinal slot resonator, 3 – absorber layer.

Download (111KB)
5. Fig. 4. Dependence of the energy of macroparticles (smooth line) and pitch factor (horizontal lines) on time (a). Dependence of the output power on time (b). Spectra of the output radiation in the range of 0-100 ns (c) and 100-150 ns (d).

Download (72KB)

Copyright (c) 2024 Russian Academy of Sciences