Simulation and selection of the optimal experimental conditions to determine the low-energy parameters of the np interaction in the nd breakup reaction at a neutron energy of 5 MeV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experiment to determine the low-energy parameters of np interaction in the nd breakup reaction at a neutron energy of 5 MeV of the RADEX channel of the INR RAS is proposed. The energy of the virtual 1S0 state and the np scattering length can be obtained from the experimental dependence of the reaction yield on the relative energy of motion of the “breakup” neutron and proton in the kinematic region, where the np interaction in the final state is most pronounced. The reaction events were simulated, based on which the optimal conditions for the future experiment were selected.

About the authors

A. A. Kasparov

Institute for Nuclear Research of the Russian Academy of Sciences

Author for correspondence.
Email: kasparov200191@gmail.com
Russian Federation, Moscow, 117312

M. V. Mordovskoy

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
Russian Federation, Moscow, 117312

A. A. Afonin

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
Russian Federation, Moscow, 117312

D. G. Tsvetkovich

Institute for Nuclear Research of the Russian Academy of Sciences

Email: kasparov200191@gmail.com
Russian Federation, Moscow, 117312

References

  1. Machleidt R., Sammarruca F., Song Y. // Phys. Rev. C. 1996. V. 53. No. 4. Art. No. R1483.
  2. Stoks V.G.J., Klomp R.A.M., Terheggen C.P.F. et al. // Phys. Rev. C. 1994. V. 49. No. 6. Art. No. 2950.
  3. Miller G.A., Nefkens B.M.K., Slaus I. // Phys. Reports. 1990. V. 194. No. 1—2. P. 1.
  4. Dumbrajs O., Koch R., Pilkuhn H. et al. // Nucl. Phys. B. 1983. V. 216. No. 277. P. 277.
  5. Gonzalez Trotter D.E., Salinas F., Chen Q. et. al. // Phys. Rev. Lett. 1999. V. 83. No. 19. P. 3788.
  6. Huhn V., Watzold L., Weber Ch. et al. // Phys. Rev. C. 2000. V. 63. No. 1. Art. No. 014003.
  7. Gonzalez Trotter D.E., Salinas Meneses F., Tornow W. et al. // Phys. Rev. C. 2006. V. 73. No. 3. Art. No. 034001.
  8. von Witsch W., Ruan X., Witala H. // Phys. Rev. C. 2006. V. 74. No. 1. Art. No. 014001.
  9. Конобеевский Е.С., Бурмистров Ю.М., Зуев С.В. и др. // Ядерн. физика. 2010. Т. 73. № 8. С. 1343; Konobeevski E.S., Burmistrov Yu.M., Zuyev S.V. et al. // Phys. Atom. Nucl. 2010. V. 73. No. 8. P. 1302.
  10. Конобеевский Е.С., Афонин А.А., Зуев С.В. и др. // Ядерн. физика. 2020. Т. 83. № 4. С. 288; Konobeevski E.S., Afonin A.A., Zuyev S.V. et al. // Phys. Atom. Nucl. 2020. V. 83. No. 4. P. 523.
  11. Конобеевский Е.С., Каспаров А.А., Мордовской М.В. и др. // Ядерн. физика. 2022. Т. 85. № 3. С. 216; Konobeevski E.S., Kasparov A.A., Mordovskoy M.V. et al. // Phys. Atom. Nucl. 2022. V. 85. No. 3. P. 289.
  12. Konobeevski E., Kasparov A., Mordovskoy M. et al. // Few-Body Syst. 2017. V. 58. Art. No. 107.
  13. Конобеевский Е.С., Зуев С.В., Каспаров A.A. и др. // Ядерн. физика. 2018. Т. 85. № 5. С. 555; Konobeevski E.S., Zuyev S.V., Kasparov A.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 5. P. 595.
  14. Каспаров А.А., Мордовской М.В., Афонин А.А. и др. // Ядерн. физика. 2023. Т. 86. № 1. С. 245; Kasparov A.A., Mordovskoy M.V., Afonin A.A. et al. // Phys. Atom. Nucl. 2023. V. 86. No. 1. P. 44.
  15. Зуев С.В., Каспаров А.А., Конобеевский Е.С. // Изв. РАН. Сер. физ. 2017. Т. 81. № 6. С. 753; Zuyev S.V., Kasparov A.A., Konobeevski E.S. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. No. 6. P. 679.
  16. Мигдал А.Б. // ЖЭТФ. 1955. Т. 28. № 1. С. 10; Migdal A.B. // JETP. 1955. V. 1. No. 1. P. 2.
  17. Watson K.M. // Phys. Rev. 1952. V. 88. No. 5. P. 1163.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences