Silicon detector systems for investigations of superdense nuclear matter at the NICA collider

Abstract

The modern vertex detectors based on silicon sensors: track systems of the leading experiments at the Large Hadron Collider, as well as vertex detectors of the MPD and SPD experiments at the NICA collider have been discussed. The development of concepts for new detector complexes using thin silicon pixel detectors for precision identification of decay vertices of charmed hadrons was considered. Also, the results of work on the development of cooling systems for large area ultrathin silicon detector modules and the results of studies of properties and characteristics of silicon pixel sensors based on CMOS technology was presented in the context of rare hadron (containing heavy quarks) decays detection.

About the authors

V. I. Zherebchevsky

Saint-Petersburg State University

Author for correspondence.
Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

V. P. Kondratiev

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

V. V. Vechernin

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

N. A. Maltsev

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

S. N. Igolkin

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

G. A. Feofilov

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

V. V. Petrov

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

S. Yu. Torilov

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

N. А. Prokofiev

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

S. N. Belokurova

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

E. O. Zemlin

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

D. A. Komarova

Saint-Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russian Federation, St Petersburg, 199034

References

  1. https://www.nupecc.org/pub/lrp17/lrp2017.pdf
  2. Braun-Munzinger P., Stachel J. // Nature. 2007. V. 448. P. 302.
  3. The ALICE Collaboration: Aamodt K., Abrahantes Quintana A., Achenbach R. et al. // JINST. 2008. V. 3. Art. No. S08002.
  4. https://www.star.bnl.gov
  5. STAR Collaboration: Aggarwal M.M., Ahammed Z., Alakhverdyants A.V. et al. // arXiv:1007.2613 [nucl-ex]. 2010.
  6. Busza W., Rajagopal K., van der Schee W. // Annu. Rev. Nucl. Part. Sci. 2018. V. 68. No. 1. P. 339.
  7. https://shine.web.cern.ch
  8. Abgaryan V., Acevedo Kado R., Afanasyev S.V. et al. // Eur. Phys. J. A. 2022. V. 58. Art. No. 140.
  9. https://nica.jinr.ru/projects/mpd.php
  10. http://spd.jinr.ru/wp-content/uploads/2023/03/TechnicalDesignReport_SPD2023.pdf.
  11. http://spd.jinr.ru
  12. Abelev B., Adam J., Adamová D. et.al. // J. Physics G. 2014. V. 41. Art. No. 087002.
  13. https://cerncourier.com/a/alice-tracks-new-territory
  14. https://nsww.org/projects/bnl/star/sub-systems.php
  15. Fukushima K., Hatsuda T. // Rep. Prog. Phys. 2011. V. 74. Art. No. 014001.
  16. Baym G., Hatsuda T., Kojo T. et al. // Rep. Prog. Phys. 2018. V. 81. Art. No. 056902.
  17. Orsaria M., Rodrigues H., Weber F., Contrera G.A. // Phys. Rev. C. 2014. V. 89. Art. No. 015806.
  18. Most E.R., Papenfort L.J., Dexheimer V. et al. // Phys. Rev. Lett. 2019. V. 122. Art. No. 061101.
  19. Riley T.E., Watts A.L., Bogdanov S. et al. // Astrophys. J. Lett. 2019. V. 887. Art. No. L21.
  20. Rapp R. // Nature. Phys. 2019. V. 15. P. 990.
  21. Linnyk O., Bratkovskaya E.L., Cassing W., Stöcker H. // Nucl. Phys. A. 2007. V. 786. P. 183.
  22. Andronic A., Braun-Munzinger P., Redlich K., Stachel J. // Phys. Lett. B. 2008. V. 659. P. 149.
  23. https://atlas.cern/Discover/Detector/Inner-Detector
  24. https://cms.cern/detector/identifying-tracks/silicon-pixels
  25. https://cerncourier.com/a/velos-voyage-into-the-unknown
  26. https://cds.cern.ch/record/1071641/files/p143.pdf
  27. Жеребчевский В.И. // Журн. «СПб университет». 2018. № 2 (3910). C. 15.
  28. https://nsww.org/projects/bnl/star/sub-systems.php.
  29. Contin G., Greiner L., Schambach J. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2018. V. 907. P. 60.
  30. Mager M. on behalf of the ALICE collaboration // Nucl. Instrum. Meth. Phys. Res. A. 2016. V. 824. P. 434.
  31. Yang P., Aglieri G., Cavicchioli C. et al. // JINST. 2015. V. 10. Art. No. C03030.
  32. Жеребчевский В.И., Кондратьев В.П., Крымов Е.Б. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 8. С. 1041; Zherebchevsky V.I., Kondratiev V.P., Krymov E.B. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 8. P. 953.
  33. Yang P., Aglieri G., Cavicchioli C. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2015. V. 785. P. 61.
  34. Aduszkiewicz A., Bajda M., Baszczyk M. et al. // Eur. Phys. J. C. 2023. V. 83. Art. No. 471.
  35. Aglieri Rinella G., Chaosong G., Di Mauro A. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2021. V. 988. Art. No. 164859.
  36. Aglieri Rinella G. // Nucl. Instrum. Meth. Phys. Res. A. 2023. V. 1049. Art. No. 168018.
  37. https://indico.cern.ch/event/1071914
  38. Kluge A. for the ALICE collaboration // Nucl. Instrum. Meth. Phys. Res. A. 2022. V. 1041. Art. No. 167315.
  39. Aglieri Rinella G., Agnello M., Alessandro B. et al. (The ALICE ITS project) // Nucl. Instrum. Meth. Phys. Res. A. 2022. V. 1028. Art. No. 166280.
  40. Mangano M., Riegler W. Conceptual design of an experiment at the FCC-hh, a future 100 TeV hadron collider. CERN Yellow Reports: Monographs, CERN-2022-002. Geneva: CERN, 2022.
  41. Accettura C., Adams D., Agarwal R. et al. // Eur. Phys. J. C. 2023. V. 83. Art. No. 864.
  42. Dalla Torre S., Surrow B. on behalf of the ATHENA Collaboration // Nucl. Instrum. Meth. Phys. Res. A. 2023. V. 1046. Art. No. 167606.
  43. Zherebchevsky V.I., Kondratiev V.P., Vechernin V.V., Igolkin S.N. // Nucl. Instrum. Meth. Phys. Res. A. 2021. V. 985. Art. No. 164668.
  44. Жеребчевский В.И., Вечернин В.В., Иголкин С.Н. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 5. С. 702; Zherebchevsky V.I., Vechernin V.V., Igolkin S.N. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 5. P. 541.
  45. Жеребчевский В.И., Мальцев Н.А., Нестеров Д.Г. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 8. С. 1146; Zherebchevsky V.I., Maltsev N.A., Nesterov D.G. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 948.
  46. Зинченко А.И., Иголкин С.Н., Кондратьев В.П., Мурин Ю.А. // Письма в ЭЧАЯ. 2020. Т. 17. № 6(231). С. 815; Zinchenko A.I., Igolkin S.N., Kondratiev V.P., Murin Yu.A. // Phys. Part. Nucl. Lett. 2020. V. 17. P. 856.
  47. Кондратьев В.П., Мальцев Н.А., Мурин Ю.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 8. С. 1212; Kondratyev V.P., Maltsev N.A., Murin Yu.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 8. P. 1005.
  48. The ALICE Collaboration. Letter of intent for an ALICE ITS Upgrade in LS3. Tech. Rep. CERN-LHCC-2019—018. LHCC—I-034. Geneva: CERN, 2019.
  49. Zherebchevsky V.I., Kondratiev V.P., Maltsev N.A. et al. // Eurasian J. Phys. Funct. Mater. 2023. V. 7. No. 3. P. 139.
  50. Vechernin V.V. // AIP Conf. Proc. 2016. V. 1701. Art. No. 060020.
  51. Vechernin V.V. // Phys. Part. Nucl. 2022. V. 53. P. 433.
  52. Нестеров Д.Г., Жеребчевский В.И., Феофилов Г.А. и др. // ЭЧАЯ. 2022. Т. 53. № 2. C. 537; Nesterov D.G., Zherebchevsky V.I., Feofilov G.A. et al. // Phys. Part. Nuclei. 2022. V. 53. No. 2. P. 582.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences