Dynamical modelling of clustering in multimodal heavy nuclei fission
- Authors: Ivanskiy Y.V.1, Unzhakova A.V.1
-
Affiliations:
- Saint-Petersburg State University
- Issue: Vol 88, No 8 (2024)
- Pages: 1254-1258
- Section: Fundamental problems and applications of physics of atomic nucleus
- URL: https://jdigitaldiagnostics.com/0367-6765/article/view/676742
- DOI: https://doi.org/10.31857/S0367676524080155
- EDN: https://elibrary.ru/OPYVPL
- ID: 676742
Cite item
Abstract
The authors consider the problem of describing theoretically the dynamics of nucleon clustering inside a fissile nucleus. The approach is based on the microscopic modeling of clustering as a new type of collective particle motion. The use of a dynamic clustering algorithm in the region of heavy nuclei requires effective multiparticle interaction to be developed for a distributed microscopic model. Calculations are performed for a double magic cluster that plays an important role in the formation of the second minimum of the fission barrier observed in the multimodal fission of heavy nuclei.
About the authors
Y. V. Ivanskiy
Saint-Petersburg State University
Email: a.unzhakova@spbu.ru
Russian Federation, St Petersburg, 199034
A. V. Unzhakova
Saint-Petersburg State University
Author for correspondence.
Email: a.unzhakova@spbu.ru
Russian Federation, St Petersburg, 199034
References
- Bender M., Bernard R., Bertsch G. et al. // J. Physics G. 2020. V. 47. No. 11. Art. No. 113002.
- Schunck N., Regnier D. // Progr. Part. Nucl. Phys. 2022. V. 125. Art. No. 103963.
- Möller P., Madland D.G., Sierk A.J., Iwamoto A. // Nature. 2001. V. 409. P. 785.
- Möller P., Sierk A.J., Ichikawa T. et al. // Phys. Rev. C. 2009. V. 79. Art. No. 064304.
- Pashkevich V., Pyatkov Y., Unzhakova A. // Int. J. Mod. Phys. E. 2009. V. 18. P. 907.
- Zdeb A., Warda M., Robledo L.M. // Phys. Rev. C. 2021. V. 104. Art. No. 014610.
- Pyatkov Yu.V., Pashkevich V.V., Penionzhkevich Yu.E. et al. // Nucl. Phys. A. 1997. V. 624. P. 140.
- Pyatkov Y., Kamanin D., Alexandrov A. et al. // Phys. Rev. C. 2017. V. 96. Art. No. 064606.
- Kamanin D.V., Pyatkov Yu. V., Solodov A.N. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 8. P. 1238.
- Pyatkov Yu. V., Kamanin D.V., Carjan N. et al. // J. Phys. Conf. Ser. 2023. V. 2586. Art. No. 012038.
- Vicsek T., Czirok A., Ben-Jacob E. et al. // Phys. Rev. Lett. 1995. V. 75. No. 6. P. 1226.
- Saber R.O., Murray R.M. // Proc. Amer. Control Conf. 2003. P. 951.
- Nouhi B., Darabi N., Sareh P. et al. // Sci. Reports. 2022. V. 12. Art. No. 12396.
- Friedkin N.E., Proskurnikov A.V., Tempo R., Parsegov S.E. // Science. 2016. V. 354(6310). P. 321.
- Amelin K., Amelina N., Granichin O. et al. // IEEE CCTA. 2019. P. 355.
- Erofeeva V., Kizhaeva N. // CAP. 2023. V. 12(1). P. 16.
- Amelina N., Chernov A., Granichin O., Ivanskiy Y., Len I. // Proc. 18th ECC2020. (Russia, 2020). P. 906.
- Унжакова А.В., Иванский Ю.В. // Изв. РАН. Сер. физ. 2022. T. 86. № 9. C. 1339; Ivanskiy Y.V., Unzhakova A.V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1108.
Supplementary files
